Advertisement

Electron capture into metastable Kr8+ recoil ions

  • Kurt M. Cramon
  • Finn Folkmann
Experiment, Single Collision
Part of the Lecture Notes in Physics book series (LNP, volume 213)

Abstract

Energy and time distributions of Auger electrons from highly ionized krypton have been measured after impact on a krypton gas of a pulsed 0.7-MeV/amu Cl11+ beam. The energy spectrum, measured delayed relative to the beam, exhibits MNn Auger electron lines following electron capture into metastable 3d−14s excitations of Kr 8+ recoil ions, with smaller contributions from Kr9+ and Kr10+. The distribution of primary-capture orbits in the n=6 and n=7 shells is changed with the ionization potential of the donor gas, observed in gasmixture experiments. Theoretical calculations of lifetimes and Auger electron energies are made. The classical model for electron capture explains both the mean-excitation state and the qualitative variation of the found total capture cross sections.

Keywords

Ionization Potential Auger Electron Capture Cross Section Capture State Auger Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    R. Mann, F. Folkmann, H.F. Beyer: J.Phys.B 14, 1161 (1981)Google Scholar
  2. (2).
    F. Folkmann, H.F. Beyer, R. Mann, K-H. Schartner: Nucl.Instrum. Methods 181, 99 (1981)CrossRefGoogle Scholar
  3. (3).
    F. Folkmann, K.M. Cramon, R. Mann, H.F. Beyer: Physica Scripta T3, 166 (1983)Google Scholar
  4. (4).
    V.S. Nikolaev, I.S. Dmitriev, Phys.Lett. 28A, 277 (1968)CrossRefGoogle Scholar
  5. (5).
    I.P. Grant, B.J. McKenzie, P.H. Norrington, D.F. Mayers, N.C. Pyper: Comput.Phys.Comm. 21, 207 (1980)CrossRefGoogle Scholar
  6. (6).
    I.P. Grant: J.Phys.B 7, 1458 (1974)Google Scholar
  7. (7).
    J.P. Desclaux: Comput.Phys.Comm. 9, 31 (1975)CrossRefGoogle Scholar
  8. (8).
    F. Folkmann, R. Mann, H.F. Beyer: Physica Scripta T3, 88 (1983)Google Scholar
  9. (9).
    R. Mann, F. Folkmann, R.S. Peterson, Gy. Szabo, K-O. Groeneveld: J.Phys.B 11, 3045 (1978)Google Scholar
  10. (10).
    J.C. Slater: Quantum Theory of Atomic Structure (McGraw-Hill, New York, 1960) Vol. 1, p. 369 and 466Google Scholar
  11. (11).
    D. Schneider, B.M. Johnson, B. Hodge, C.F. Moore: Phys.Lett. 59A, 25 (1976)CrossRefGoogle Scholar
  12. (12).
    E. Justiniano, C.L. Cocke, T.J. Gray, R. Dubois, C. Can, W. Waggoner, R. Schuch, H. Schmidt-Böcking, H. Ingwersen: Phys.Rev.A 29, 1088 (1984)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Kurt M. Cramon
    • 1
  • Finn Folkmann
    • 1
  1. 1.Institute of PhysicsUniversity of AarhusAarhusDenmark

Personalised recommendations