Advertisement

Density matrix description of collisional electron transfer into the continuum of ionic projectiles

  • Joachim Burgdörfer
Theory, Single Collision
Part of the Lecture Notes in Physics book series (LNP, volume 213)

Abstract

Recent theories for emission of cusp electrons resulting from either electron capture to continuum (ECC) or electron loss to continuum (ELC) show a large variety of anisotropies in the doubly-differential cross section (DDCS). We develop a unified description of cusp anisotropies in terms of the density matrix for low-lying continuum states. The anisotropy parameters ßk in the DDCS originating from partial-wave coherences can be expressed in terms of expectation values of the Runge-Lenz operator. Selection rules for vanishing ßk within the Born approximation are derived. Examples for the electron distribution following ECC and ELC will be discussed. The present approach provides also a unified description of anisotropic populations in both high Rydberg and low-lying continuum states.

Keywords

Density Matrix Electron Distribution Anisotropy Parameter Born Approximation Projectile Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.B.Crooks, M.E.Rudd, Phys.Rev.Lett. 25, 1599 (1970)CrossRefGoogle Scholar
  2. 2.
    K.G.Harrison, M.W.Lucas, Phys.Lett. 33A, 142 (1970)CrossRefGoogle Scholar
  3. 3.
    V.H.Ponce, W.Meckbach, Comments At.Vol.Phys. 10, 231 (1981)Google Scholar
  4. 4.
    M.Breinig, S.Elston, S.Huldt, L.Liljeby, C.Vane, S.Berry, G.Glass, M.Schauer, I.Sellin, G.Alton, S.Datz, S.Overbury, R.Laubert, M.Suter, Phys.Rev. A25, 3015 (1982)CrossRefGoogle Scholar
  5. 5.
    K.O.Groeneveld, W.Meckbach, I.A.Sellin, J. Burgörfer, Comments At.Mol.Phys. 14, 187 (1984)Google Scholar
  6. 6.
    H.-D.Betz, D.Röschenthaler, J.Rothermel, Phys.Rev.Lett. 50, 34 (1983)CrossRefGoogle Scholar
  7. 7.
    Y.Yamazaki, N.Oda, Phys.Rev.Lett. 52, 29 (1984)CrossRefGoogle Scholar
  8. 8.
    J.Macek, Phys.Rev. A1, 235 (1970)CrossRefGoogle Scholar
  9. 9.
    M.E.Rudd, J.Macek, Case Stud.At.Mol.Phys. 3, 47 (1972)Google Scholar
  10. 10.
    F.Chan, J.Eichler, Phys.Rev. A20, 367 (1979)CrossRefGoogle Scholar
  11. 11.
    K.Dettmann, K.G.Harrison, M.W.Lucas, J.Phys. B7, 269 (1974)Google Scholar
  12. 12.
    R.Shakeshaft, L.Spruch, Phys.Rev.Lett. 41, 1037 (1978)CrossRefGoogle Scholar
  13. 13.
    D.Jakubassa-Amundsen, J.Phys. B16, 1767 (1983)Google Scholar
  14. 14.
    C.R.Garibotti, J.Miraglia, J.Phys. B14, 863 (1981)Google Scholar
  15. 14a.
    R.Barrachina, C.R.Garibotti, Phys.Rev. A28, 1821 (1983)CrossRefGoogle Scholar
  16. 15.
    F.Drepper, J.Briggs, J.Phys. B9, 2063 (1976)Google Scholar
  17. 15a.
    J.Briggs, F.Drepper, J.Phys. B11, 4033 (1978)Google Scholar
  18. 15b.
    M.Day, J.Phys. B13, L65 (1980)Google Scholar
  19. 15c.
    J.Briggs, M.Day, J.Phys. B13, 4797 (1980)Google Scholar
  20. 15d.
    M.Day, J.Phys. B14, 231 (1981)Google Scholar
  21. 16.
    J.Burgdörfer, Phys.Rev.Lett. 51, 374 (1983)CrossRefGoogle Scholar
  22. 16a.
    J.Burgdörfer, M.Breinig, S.Elston, I.Sellin, Phys.Rev. A28, 3277 (1983)Google Scholar
  23. 17.
    W.Meckbach, R.Vidal, P.Focke, I.B.Nemirovsky, E.Gonzales Lepera, Phys.Rev.Lett. 52, 621 (1984)CrossRefGoogle Scholar
  24. 18.
    S.Elston et al., this conferenceGoogle Scholar
  25. 19.
    E.P.Wigner, Phys.Rev. 73, 1002 (1948)CrossRefGoogle Scholar
  26. 20.
    J.Burgdörfer, Z.Phys. A309, 285 (1983)Google Scholar
  27. 21.
    M.Rødbrø, F.Andersen, J.Phys. B12, 2883 (1979)CrossRefGoogle Scholar
  28. 22.
    M.Lucas, W.Steckelmacher, J.Macec, J.Potter, J.Phys. B13, 4833 (1980)Google Scholar
  29. 23.
    H.Bethe, E.Salpeter, Quantum Mechanics of One-and Two Electron Atoms (Springer-(Verlag, Berlin, 1957)Google Scholar
  30. 24.
    M.Englefield, Group Theory and the Coulomb Problem (Wiley-Interscience, New York, 1972)Google Scholar
  31. 25.
    J.Bosse, H.Gabriel, Z.Phys. 266, 283 (1974) and references thereinCrossRefGoogle Scholar
  32. 26.
    U.Fano, J.Macek, Rev.Mod.Phys. 43, 553 (1973)CrossRefGoogle Scholar
  33. 27.
    J.Burgdörfer, to be publishedGoogle Scholar
  34. 28.
    D.Brink, G.Satchler, Angular Momentum (Clarendon Press, Oxford, 1968)Google Scholar
  35. 29.
    C.Havener, W.Westerve, J.Risley, N.Tolk, J.Tully, Phys.Rev.Lett. 48, 926 (1982)CrossRefGoogle Scholar
  36. 30.
    J.Burgdörfer, L.Dubé, Phys.Rev.Lett. (1984), in pressGoogle Scholar
  37. 31.
    W.Meckbach, I.B.Nemirovsky, C.Garibotti, Phys.Rev. A24, 1793 (1981)CrossRefGoogle Scholar
  38. 32.
    J.Briggs, J.Macek, K.Taulbjerg, Comments At.Mol.Phys. 12, 1 (1982)Google Scholar
  39. 33.
    J.Lodge, J.Phys. B2, 322 (1969)Google Scholar
  40. 34.
    H. Böckl, R.Spies, F.Bell, D.Jakubassa-Amundsen, Phys.Rev. A29, 983 (1984)Google Scholar
  41. 35.
    E.Kanter, D.Schneider, Z.Vager, D.Gemmell, B.Zabransky, G.Yuan-zhuang, P.Arcuni, P.Koch, D.Mariani, W.Van de Water, Phys.Rev. A29, 583 (1984)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Joachim Burgdörfer
    • 1
  1. 1.Institut für Atom- und FestkörperphysikFU BerlinW. Germany

Personalised recommendations