Process specification of logic programs

  • R. Ramanujam
  • R. K. Shyamasundar
Session 1 Specification And Programming
Part of the Lecture Notes in Computer Science book series (LNCS, volume 181)


In this paper, we show that logic programs serve as a specification language for distributed processes. This is achieved by defining refutations with a view to use AND-parallelism and proving them sound and complete with respect to the standard semantics of logic programs given by van Emden and Kowalski.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. 1.
    Apt K.R. and M.H. van Emden: Contributions to the theory of logic programming, JACM, Vol.29, No.3, Oct. 1982.Google Scholar
  2. 2.
    Bellia M., P. Degano and G. Levi: Applicative Communicating Processes in First-Order Logic, Symposium on Programming, LNCS 137 (Springer-Verlag 1982).Google Scholar
  3. 3.
    Clark K.L. and S.A. Tarnlund (eds.): Logic Programming, Academic Press, (London, 1982).Google Scholar
  4. 4.
    Clark K.L. and S. Gregory: PARLOG: a parallel logic programming language, Imperial College Tech. Rep. (May 1983).Google Scholar
  5. 5.
    Kahn G: The semantics of a simple language for parallel programming, in J.L. Rosenfeld (ed), IFIP74, Amsterdam, 471–475 (North Holland, 1974).Google Scholar
  6. 6.
    Lassez J.L. and M.J. Maher: Closure and fairness in the semantics of programming logic, to appear in Theoretical Computer Science (1984).Google Scholar
  7. 7.
    Shapiro E: A subset of Concurrent Prolog and its interpreter, ICOT (Jan. 1983).Google Scholar
  8. 8.
    R. Ramanujam and R.K. Shyamasundar: Logic Programs for Specifying Dynamic Networks of Processes, submitted for publication, Apr. 1984.Google Scholar
  9. 9.
    van Emden M.H. and F. Lucena Filho: Predicate Logic as a Language for Parallel Programming, in Clark and Tarnlund 82.Google Scholar
  10. 10.
    van Emden M.H. and R.A. Kowalski: The semantics of Predicate Logic as a Programming Language, JACM, Vol.23, No. 4, (Dec. 1976).Google Scholar
  11. 11.
    Zwiers J., A de Bruin and WP de Roever: A proof system for partial correctness of dynamic networks of processes, Proceedings of the 2nd Workshop on Logics of Programs, D. Kozen and E. Clarke (eds.), LNCS 164 Springer-Verlag (Heidelberg 1983).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • R. Ramanujam
    • 1
  • R. K. Shyamasundar
    • 1
  1. 1.Computer Science GroupTata Institute of Fundamental ResearchBombay

Personalised recommendations