Advertisement

Resonances and perturbation theory for N-body atomic systems in external AC-electric fields

  • S. Graffi
III Models and Phenomena
Part of the Lecture Notes in Physics book series (LNP, volume 211)

Keywords

Operator Family Perturbation Expansion Fermi Golden Rule Dinger Equation Monochromatic Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    W.P.Reinhardt: Complex coordinates in the theory of atomic and molecular structure and dynamics. Ann. Rev. Phys. Chem. 33, 223–255 (1982)CrossRefGoogle Scholar
  2. (2).
    S.Graffi, V.Grecchi: Resonances in Stark effect and perturbation theory. Corunun. Math. Phys. 62, 83–96 (1978)CrossRefGoogle Scholar
  3. (3).
    I.Herbst: Dilation analyticity in constant electric field,I: The two-body problem. Commun. Math. Phys. 64, 279–298 (1979)Google Scholar
  4. (4).
    S.Graffi, V.Grecchi: Resonances in the Stark effect of atomic systems and perturbation theory. Commun. Math. Phys. 79, 91–109 (1981)Google Scholar
  5. (5).
    I.Herbst, B.Simon: Dilation analyticity in constant electric field, II: The N-body problem, Borel summability. Commun. Math. Phys. 80, 181–216 (1981)Google Scholar
  6. (6).
    K.Yajima: Scattering theory for Schrödinger operators with potentials periodic in time. J. Math. Soc. Japan 29, 729–743 (1977)Google Scholar
  7. (7).
    K.Yajima: Resonances for AC-Stark effect. Commun. Math. Phys. 87, 331–352 (1982)CrossRefGoogle Scholar
  8. (8).
    H.Kitada, K.Yajima: A scattering theory for time-dependent longrange potentials. Duke Math. J. 49, 341–376 (1931)Google Scholar
  9. (9).
    E.Merzbacher, Quantum Mechanics, John Wiley, New York 1961Google Scholar
  10. (10).
    S.Graffi, K.Yajima: Exterior complex scaling and the AC-Stark effect in a Coulomb field. Commun. Math. Phys. 89, 277–301 (1983)Google Scholar
  11. (11).
    B.Simon: The definition of molecular resonance curves by the method of exterior complex scaling. Phys. Lett. 71A, 211–214 (1979)Google Scholar
  12. (12).
    N.L.Manakov, A.G.Feinshtein: Quasi-stationary quasi-energy states and convergence of the perturbation series in a monochromatic field. Theor. Math. Phys. 48, 815–822 (1982)CrossRefGoogle Scholar
  13. (13).
    N.L.Manakov, M.A.Preobrazhznskii, L.P.Rapoport, A.G.Feinshtein: Higher order perturbation theory effects in the shift and width of atomic levels in an optical field. Soviet Physics JETP 48, 626–635 (1978)Google Scholar
  14. (14).
    N.L.Manakov, A.G.Feinshtein: Decay of a weakly bound state in a monochromatic field. Soviet Physics JETP 52, 382–388 (1980)Google Scholar
  15. (15).
    J.S.Howland: Complex scaling of ac Stark Hamiltonians. J.Math. Phys. 24, 1240–1244 (1983)Google Scholar
  16. (16).
    S.Graffi, V.Grecchi, H.J.Silverstone: Resonances and convergence of perturbation theory for N-body atomic systems in external AC-electric field. Bologna preprint, January 1984.Google Scholar
  17. (17).
    M.Reed, B.Simon: Methods of Modern Mathematical Physics, Voll. I–IV, Academic Press, New York 1975-79Google Scholar
  18. (18).
    T.Kato: Perturbation Theory for Linear Operators, Springer-Verlag Berlin-Heidelberg-New York 1966 (Second Edition 1976)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • S. Graffi
    • 1
  1. 1.Dipartimento di MatematicaUniversità di BolognaBolognaItaly

Personalised recommendations