An analytically solvable multichannel schrödinger model for hadron spectroscopy

  • E. van Beveren
  • C. Dullemond
  • T. A. Rijken
  • G. Rupp
III Models and Phenomena
Part of the Lecture Notes in Physics book series (LNP, volume 211)


In the foregoing a new approach to quark models within the context of the good old Schrödinger equation has been presented. Essential for the applicability to complicated hadronic systems involving many coupled channels was an approximative formulation with delta functions, which allowed to write down the S-matrix in closed form. Phenomenological realizations of the model have shown to be able to account for a multitude of experimental data in spite of the unconventional but simple form of the chosen interactions. These results also might put question-marks to the very detailed predictions of many single-channel quark models.


Quark Model Couple Channel Strong Decay Free Channel Standard Quark Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorn and V.F. Weisskopf, Phys. Rev. D9, 3471 (1974); T.A. DeGrand, R.L. Jaffe, K. Johnson and J.J. Kikis, ibid. 12, 2060 (1975).Google Scholar
  2. [2]
    N. Isgur and G. Karl, Phys. Lett. 72B, 109 (1977); Phys.Rev. D18,4187(1978);Phys. Lett 74B,353(1978); Phys. Rev. D19, 2653(1979); ibid.20, 1191 (1979).Google Scholar
  3. [3]
    For references concerning quarkonium potentials see e.g. A. Martin, Phys. Lett. 93B, 338 (1980).Google Scholar
  4. [4]
    E. Eichten, K. Gottfried, K.D. Lane, T. Kinoshita and T.-M. Yan, Phys. Rev. D17, 3090 (1978); ibid. 21, 313(E) (1980); ibid. 21, 203 (1980).Google Scholar
  5. [5]
    E. van Beveren, C. Dullemond and G. Rupp, Phys. Rev. D21, 772 (1980).Google Scholar
  6. [6]
    E. van Beveren, G. Rupp, T.A. Rijken and C. Dullemond, Phys. Rev. D27, 1527 (1983).Google Scholar
  7. [7]
    E. van Beveren, C. Dullemond and T.A. Rijken, Z. Phys. C19. 275 (1983).Google Scholar
  8. [8]
    Bateman Manuscript Project, Higher Transcendental Functions, Vol. 1, eds Erdélyi et al. (McGraw-Hill, New York, 1953).Google Scholar
  9. [9]
    C. Dullemond, G. Rupp, T.A. Rijken and E. van Beveren, Comp. Phys. Comm. 27, 377 (1982).CrossRefGoogle Scholar
  10. [10]
    G. Rupp, Ph.D. Thesis, Nijmegen report THEF-NYM-82.14 (1982) (unpublished).Google Scholar
  11. [11]
    C. Dullemond, T.A. Rijken, E. van Beveren and G. Rupp, Nijmegen report THEF-NYM-83.09 (1983).Google Scholar
  12. [12]
    E. van Beveren, C. Dullemond and T.A. Rijken, Nijmegen report THEF-NYM-84.01 (1984) (submitted to Phys. Rev. D).Google Scholar
  13. [13]
    C. Dullemond, T.A. Rijken and E. van Beveren, Nijmegen report THEF-NYM-83.02 (1983) (to be published in Nuov. Cim. 1984).Google Scholar
  14. [14]
    A. Le Yaouanc, L. Oliver, O. Pène and J.-C. Raynal, Phys. Rev. D8, 2223 (1973).Google Scholar
  15. [15]
    H. Grosse and A. Martin, Phys. Rep. 60, 341 (1980).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • E. van Beveren
    • 1
  • C. Dullemond
    • 1
  • T. A. Rijken
    • 1
  • G. Rupp
    • 2
  1. 1.Institute for Theoretical PhysicsUniversity of NijmegenNijmegenThe Netherlands
  2. 2.Zentrum für interdisziplinäre ForschungUniversität BielefeldBielefeld lGermany

Personalised recommendations