Advertisement

Wave functions on subgroups of the group of affine canonical transformations

  • Alex Grossmann
  • Thierry Paul
II Mathematical Framework
Part of the Lecture Notes in Physics book series (LNP, volume 211)

Keywords

Irreducible Component Closed Subspace Canonical Variable Reference Section Projective Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

References Section 3

  1. A.L. Carey: Bull. Austral. Math. Soc. 15, 1 (1976)Google Scholar
  2. M. Duflo, C.C. Moore: J. Funct. Anal. 21, 209 (1976)CrossRefGoogle Scholar
  3. S. Gaal: Linear Analysis and Representation Theory, Springer 1973Google Scholar
  4. A. Grossmann, J. Morlet: to appear in S.I.A.M., Mathematical Analysis A.Google Scholar
  5. Grossmann, J. Morlet: “Decomposition of functions into wavelets of constant shape and related transforms”, to appear in: “Mathematics + Physics, Lect. on Recent Results”, World Sc. Publ. SingaporeGoogle Scholar
  6. G. Warner: Harmonic Analysis on semi-simple Lie groups. Vol. 1 and Vol. 2, Springer Verlag 1972Google Scholar

References Section 3

  1. A. Grossmann: “Geometry of real and complex canonical transformations in quantum mechanics”, in: Group Theoretical Methods in Physics, Tübingen 1977, edited by P. Kramer and A. Rieckers, Springer 1978Google Scholar
  2. I. Daubechies: J. Math. Phys. 21 (6), 1377 (1980).CrossRefGoogle Scholar

References Section 4

  1. V. Bargmann: Comm. Pure Appl. Math. 14, 187 (1961)Google Scholar
  2. V. Bargmann: Comm. Pure Appl. Math. 20, 1 (1967).Google Scholar

References Section 5

  1. A. Grossmann, J. Morlet: to appear in S.I.A.M. Mathematical AnalysisGoogle Scholar
  2. A. Grossmann, J. Morlet: “Decomposition of functions into wavelets of constant shape and related transforms”, to appear in “Mathematics + Physics, Lectures on Recent Results", World Sc. Publ. SingaporeGoogle Scholar

References Section 6

  1. T. Paul: “Functions analytic on the half-plane as quantum mechanical states”, preprint Bielefeld Project Nr. 2/Nr. 22, to appear in J. Math. Physics.Google Scholar
  2. T. Paul: These de 3 o cycle Universite “Pierre et Marie Curie” Paris VI.Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Alex Grossmann
    • 1
  • Thierry Paul
    • 1
  1. 1.Centre de Physique ThéoriqueSection 2 CNRS - LuminyMarseille, Cedex 9France

Personalised recommendations