Advertisement

Perturbation theory for resonances in terms of fredholm determinants

  • F. Gesztesy
II Mathematical Framework
Part of the Lecture Notes in Physics book series (LNP, volume 211)

Keywords

Point Interaction Fredholm Determinant Meromorphic Continuation Geometric Multiplicity Pure Coulomb 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Abramowitz and I.A. Stegun, “Handbook of Mathematical Functions” (Dover, New York, 1972)Google Scholar
  2. [2]
    S. Albeverio and R. Høegh-Krohn, J. Operator Theory 6, 313 (1981)Google Scholar
  3. [3]
    S. Albeverio, F. Gesztesy and R. Høegh-Krohn, Ann. Inst. H. Poincaré A37, 1 (1982)Google Scholar
  4. [4]
    S. Albeverio, F. Gesztesy, R. Høegh-Krohn and L. Streit, Ann. Inst. H. Poincaré A 38, 263 (1983)Google Scholar
  5. [5]
    S. Albeverio, D. Bollé, F. Gesztesy, R. Høegh-Krohn and L. Streit, Ann. Phys. 148, 308 (1983)CrossRefGoogle Scholar
  6. [6]
    S. Albeverio, L.S. Ferreira, F. Gesztesy, R. Høegh-Krohn and L. Streit, Phys. Rev. C29, 680 (1984)Google Scholar
  7. [7]
    S. Albeverio and R. Høegh-Krohn, “Perturbation theory of resonances in auantum mechanics”, J. Math. Anal. Appl. 100 (1984), in printGoogle Scholar
  8. [8]
    S. Albeverio, F. Gesztesy, R. Høegh-Krohn and W. Kirsch, “On point interactions in one dimension”, J. Operator Theory, 12, 101 (1984)Google Scholar
  9. [9]
    S. Albeverio, F. Gesztesy, H. Holden'and R. Høegh-Krohn, “Solvable Models in Quantum Mechanics”, book in preparationGoogle Scholar
  10. [10]
    A.A. Arsenev, Theoret. Math. Phys. 15, 505 (1973)CrossRefGoogle Scholar
  11. [11]
    D. Babbitt and E. Balslev, J. Math. Anal. Appl. 54, 316 (1976)CrossRefGoogle Scholar
  12. [12]
    E. Balslev, “Resonances in three-body scattering theory”, Aarhus Preprint Series 1981/82, No. 3Google Scholar
  13. [13]
    E. Balslev, “Local spectral deformation techniques for Schrödin-ger operators”, Preprint 1982Google Scholar
  14. [14]
    H. Baumgärtel, M. Demuth and M. Wollenberg, Math. Nachr. 86, 167 (1978)Google Scholar
  15. [15]
    D. Bollé and S.F.J. Wilk, J. Math. Phys. 24, 1555 (1983)CrossRefGoogle Scholar
  16. [16]
    D. Bollé, F. Gesztesy and S.F.J. Wilk, “A complete treatment of low-energy scattering in one dimension”, J. Operator Theory, in printGoogle Scholar
  17. [17]
    D. Bollé, F. Gesztesy and W. Schweiger, “Scattering theory for long-range systems at threshold”, Univ. Bielefeld, ZiF-Preprint 1984, No. 76Google Scholar
  18. [18]
    D. Bollé, C. Daneels, F. Gesztesy and S.F.J. Wilk, in preparationGoogle Scholar
  19. [19]
    D. Bollé, F. Gesztesy, C. Nessmann and L. Streit, in preparationGoogle Scholar
  20. [20]
    E. Brüning and F. Gesztesy, J. Math. Phys. 24, 1516 (1983)CrossRefGoogle Scholar
  21. [21]
    K. Chadan and P.C. Sabatier, “Inverse Problems in Quantum Scattering Theory” (Springer, New York 1977)Google Scholar
  22. [22]
    M. Cheney, J. Math. Phys. 25, 95 (1984)Google Scholar
  23. [23]
    M. Cheney, “Two-dimensional scattering: The number of bound states from scattering data”, Stanford preprintGoogle Scholar
  24. [24]
    M. Ciafaloni and P. Menotti, Nuovo Cimento 35, 160 (1965)Google Scholar
  25. [25]
    J.M. Combes, Int. J. Quantum Chem. 14, 353 (1978)CrossRefGoogle Scholar
  26. [26]
    L. Dabrowski and H. Grosse, “on nonlocal point interactions in one, two and three dimensions”, Preprint, Univ. Vienna, UWThPh-1983-15Google Scholar
  27. [27]
    E.B. Davies, Lett. Math. Phys. 1, 31 (1975)CrossRefGoogle Scholar
  28. [28]
    C.L. Dolph, J.B. McLeod and D. Thoe, J. Math. Anal. Appl. 16, 311 (1966)Google Scholar
  29. [29]
    N. Dunford and J.T. Schwartz, “Linear Operators II. Spectral Theory” (Interscience, New York, 1963)Google Scholar
  30. [30]
    G. Flamand, “Mathematical theory of non-relativistic two-and three-particle systems with point interactions”, Cargése Lectures, F. Lurcat(ed.) (Gordon and Breach, New York, 1967)Google Scholar
  31. [31]
    R. Froese, I. Herbst, M. Hoffmann-Ostenhof and T. Hoffmann-Ostenhof, J. Anal. Math. 41, 272 (1982)Google Scholar
  32. [32]
    F. Gesztesy and L. Pittner, Rep. Math. Phys. 19, 143 (1984)CrossRefGoogle Scholar
  33. [33]
    A. Grossmann and T.T. Wu, J. Math. Phys. 2, 710 (1961)CrossRefGoogle Scholar
  34. [34]
    A. Grossmann, J. Math. Phys: 2, 714 (1961)CrossRefGoogle Scholar
  35. [35]
    A. Grossmann and T.T. Wu, J. Math. Phys. 3, 684 (1962)CrossRefGoogle Scholar
  36. [36]
    A. Grossmann, R. Høegh-Krohn and M. Mebkhout, J. Math. Phys. 21, 2377 (1980)Google Scholar
  37. [37]
    E.M., Harrell, Commun. Math. Phys. 86, 221 (1982)CrossRefGoogle Scholar
  38. [38]
    H. Holden, “On coupling constant thresholds in two dimensions”, Univ. Bielefeld, ZiF-Preprint 1984, No. 44Google Scholar
  39. [39]
    H. Holden, R. Høegh-Krohn and S. Johannesen, Adv. Appl. Math. 4, 402 (1983)Google Scholar
  40. [40]
    H. Holden, R. Høegh-Krohn and M. Mebkhout, “The short-range expansion for multiple well scattering theory”, Preprint, CNRS-Marseille, CPT-84/PE.1590Google Scholar
  41. [41]
    L.P. Horwitz and I.M. Siegal, Helv. Phys. Acta 51, 685 (1978)Google Scholar
  42. [42]
    L. Hostler, J. Math. Phys. 8, 642 (1967)CrossRefGoogle Scholar
  43. [43]
    J.S. Howland, Proc. Am. Math. Soc. 21, 381 (1969)Google Scholar
  44. [44]
    J.S. Howland, Arch. Rat. Mech. Anal. 39, 323 (1970)CrossRefGoogle Scholar
  45. [45]
    J.S. Howland, Proc. Am. Math. Soc. 28, 177 (1971)Google Scholar
  46. [46]
    J.S. Howland, J. Math. Anal. Appl. 36, 12 (1971)Google Scholar
  47. [47]
    J.S. Howland, Pac. J. Math. 55,157 (1974)Google Scholar
  48. [48]
    J.S. Howland, J. Math. Anal. Appl. 50, 415 (1975)CrossRefGoogle Scholar
  49. [49]
    A. Jensen, J. Math. Anal. Appl. 59, 505 (1977)CrossRefGoogle Scholar
  50. [50]
    A. Jensen, Ann. Inst. H. Poincaré A33,209 (1980)Google Scholar
  51. [51]
    A. Jensen and T. Kato, Duke Math. J. 46, 583 (1979)CrossRefGoogle Scholar
  52. [52]
    R. Jost, Helv. Phys. Acta 20, 256 (1947)Google Scholar
  53. [53]
    R. Jost and A. Pais, Phys. Rev. 82, 840 (1951)CrossRefGoogle Scholar
  54. [54]
    T. Kato, “Perturbation Theory for Linear Operators”, 2nd ed. (Springer, New York, 1980)Google Scholar
  55. [55]
    T. Kato, Math. Ann. 162, 258 (1966)CrossRefGoogle Scholar
  56. [56]
    N.N. Khuri, Phys. Rev. 107, 1148 (1957)CrossRefGoogle Scholar
  57. [57]
    M. Klaus, Ann. Phys. 108, 288 (1977)CrossRefGoogle Scholar
  58. [58]
    M. Klaus, Helv. Phys. Acta 55, 49 (1982)Google Scholar
  59. [59]
    M. Klaus and B. Simon, Ann. Phys. 130, 251 (1980)CrossRefGoogle Scholar
  60. [60]
    R. Konno and S.T. Kuroda, J. Fac. Sci. Univ. Tokyo 113, 55 (1966)Google Scholar
  61. [61]
    S.N. Lakaev, Theoret. Math. Phys. 44, 810 (1980)Google Scholar
  62. [62]
    J.B. McLeod, Quart. J. Math. Oxford 18, 219 (1967)Google Scholar
  63. [63]
    K. Meetz, J. Math. Phys. 3, 690 (1962)CrossRefGoogle Scholar
  64. [64]
    M. Murata, J. Func. Anal. 49, 10 (1982)CrossRefGoogle Scholar
  65. [65]
    R.G. Newton, “Scattering Theory of Waves and Particles”, 2nd ed. (Springer, New York, 1982)Google Scholar
  66. [66]
    R.G. Newton, J. Math. Phys. 13, 880 (1972)CrossRefGoogle Scholar
  67. [67]
    R.G. Newton, Czech. J. Phys. B24, 1195 (1974)CrossRefGoogle Scholar
  68. [68]
    R.G. Newton, J. Math. Phys. 18, 1348 (1977)CrossRefGoogle Scholar
  69. [69]
    R.G. Newton, J. Math. Phys. 18, 1582 (1977)CrossRefGoogle Scholar
  70. [70]
    H.M. Nussenzveig, Nucl. Phys. 11, 499 (1959)CrossRefGoogle Scholar
  71. [71]
    J. Nuttall, J. Math. Phys. 8, 873 (1967)CrossRefGoogle Scholar
  72. [72]
    A.G. Ramm, J. Math. Anal. Appl. 88, 1 (1982)CrossRefGoogle Scholar
  73. [73]
    J. Rauch, J. Func. Anal. 35, 304 (1980)Google Scholar
  74. [74]
    M. Reed and B. Simon, “Methods of Modern Mathematical Physics III: Scattering Theory” (Academic, New York, 1979)Google Scholar
  75. [75]
    M. Reed and B. Simon, “Methods of Modern Mathematical Physics IV: Analysis of Operators” (Academic, New York 1978)Google Scholar
  76. [76]
    F. Rellich, Math. Z. 49, 702 (1943/44)CrossRefGoogle Scholar
  77. [77]
    H. Rollnik, Z. Physik 145, 639 (1956)CrossRefGoogle Scholar
  78. [78]
    N. Shenk and D. Thoe, Rocky Mountain J. Math. 1 89 (1971)Google Scholar
  79. [79]
    H.K.H. Siedentop, Phys. Lett. 99A, 65 (1983)Google Scholar
  80. [80]
    H.K.H. Siedentop, “On the width of resonances”, Caltech-Preprint 1984Google Scholar
  81. [81]
    B. Simon, “Quantum Mechanics for Hamiltonians defined as Quadratic Forms” (Princeton Univ. Press 1971)Google Scholar
  82. [82]
    B. Simon, Ann. Math. 97, 247 (1974)Google Scholar
  83. [83]
    B. Simon, Ann. Phys. 97, 279 (1976)CrossRefGoogle Scholar
  84. [84]
    B. Simon, Adv. Math. 24, 244 (1977)Google Scholar
  85. [85]
    B. Simon, Int. J. Quantum Chem. 14, 529 (1978)CrossRefGoogle Scholar
  86. [86]
    B. Simon, “Trace Ideals and their Applications”, London Math. Soc. Lecture Notes Series 35 (Cambridge Univ. Press 1979)Google Scholar
  87. [87]
    S. Steinberg, Arch. Rat. Mech. Anal. 38, 278 (1970)Google Scholar
  88. [88]
    J. Zorbas, J. Math. Phys. 21, 840 (1980)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • F. Gesztesy
    • 1
  1. 1.Zentrum für interdisziplinare ForschungUniversität BielefeldBielefeld 1FR Germany

Personalised recommendations