Morphological instabilities in the solidification front of binary mixtures

  • B. Caroli
  • C. Caroli
  • S. de Cheveigné
  • C. Guthmann
  • B. Roulet
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 210)


To conclude with respect to the present experiments, it is clear that much remains to be done to gain a better understanding of the various phenomena observed. Such studies will certainly provide a wealth of information on the dynamics of morphologic instabilities.

More generally, in the context of this book, we should like to point out some parallels which can be drawn between the convective instability and the solid-liquid interface one described here. First, the basic physical phenomena are similar : a system, pushed far from equilibrium (by an inverse temperature gradient in the Bayleigh-Benard problem, by an accumulation of solute in the present case) produces a macroscopically ordered, space-periodic response improving the corresponding transport : convection to carry heat, solute evacuation in the grooves between the cells observed here.


Directional Solidification Solidification Front Stability Curve Bifurcation Curve Morphological Instability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.S. Langer, Rev. Mod. Phys. 52 (1980) 1, and references therein.CrossRefGoogle Scholar
  2. 2.
    J. Friedel, Dislocations, chapter VII, Pergamon Press, Oxford (1964)Google Scholar
  3. 3.
    W.W. Mullins, R.F. Sekerka, J. Appl. Phys. 35 (1964) 444Google Scholar
  4. 4.
    S.R. Coriell, R.F. Sekerka, J. Cryst. Growth 34 (1976) 157–163, and references thereinCrossRefGoogle Scholar
  5. 5.
    D.T.J. Hurle, E. Jakeman, A.A. Wheeler, J. Cryst. Growth 58 (1932) 163–179 and references thereinCrossRefGoogle Scholar
  6. 6.
    B. Caroli, C. Caroli, B. Roulet, J. Physique 43 (1982) 1767–1780Google Scholar
  7. 7.
    See for example: L.R. Morris, W.C. Winegard, J. Cryst. Growth 5 (1969) 361–375CrossRefGoogle Scholar
  8. 8.
    D.J. Wollkind, L.A. Segel, Phil. Trans. Roy. Soc. 268 (1970) 351–380Google Scholar
  9. 9.
    M. Kerzberg, Phys. Rev. B28 (1983) 247Google Scholar
  10. 10.
    K.A. Jackson, in Crystal Growth: A Tutorial Approach, ed. W. Bardsley, D.T.J. Hurle, J.B. Mullins, North Holland, Amsterdam (1979).Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • B. Caroli
    • 2
  • C. Caroli
    • 1
  • S. de Cheveigné
    • 1
  • C. Guthmann
    • 1
  • B. Roulet
    • 1
  1. 1.Groupe de Physique des Solides de l'Ecole Normale SupérieureUniversité Paris VIIParis Cedex
  2. 2.UER Sciences Exactes et NaturellesAmiens

Personalised recommendations