Rotating disk flows, transition to turbulence

  • M. P. Chauve
  • G. Tavera
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 210)


From this work it comes out that it was difficult to define in a more precise way the conditions allowing the analysis of stability in geometries G1 and G2 not without disturbing by the finited dimensions of experiment. So, it is necessary to sharpen our knowledge about possible flows even with no instabilities.

In other aspects, there is great difficulty to define the magnitude of the value regarding the acceptable geometrical errors (for example, how precise is the rotating disk in keeping the same plan) which allows the conclusions relating to the development of instabilities to carry a good enough general validity.


Stream Line Disk Flow Viscous Diffusion Central Injector Instability Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ADAMS, M.L., SZERI, A.Z., 1982, J. Appl. Mech. 49, 1.Google Scholar
  2. BATCHELOR, G.K., 1951, Quart. J. Mech. Appl. Math. 4, 29.Google Scholar
  3. COCHRAN, W.G., 1934, Proc. Camb. Phil. Soc. 30, 365.Google Scholar
  4. COLES, D., 1965, J. Fluid Mech., 21, 385.Google Scholar
  5. FLORENT, P., DINH, N.N., DINH, V.N., 1973, J. Mec., 12, 555.Google Scholar
  6. GREGORY, N., STUART, J.T., WALKER, W.S., 1955, Phil., Trans. A248, 155.Google Scholar
  7. HOLODNIOK, M., KUBICEK, M., HLAVACEK, V., 1981, J. Fluid Mech.,108,227.Google Scholar
  8. KARMAN, T., Von, 1921, Z. angew. Math. Mech. 1, 233.Google Scholar
  9. KOBAYASHI, R., KOHAMA, Y., TAKAMADATE, C., 1980, Acta Mech. 35, 71.CrossRefGoogle Scholar
  10. MALIK, R.M., WILKINSON, S.P., ORSZAG, S.A., 1981, A.I.A.A. 19, 1131.Google Scholar
  11. MELLOR, G.L., CHAPPLE, P.J., STOKES, V.K., 1968, J. Fluid Mech., 31,95.Google Scholar
  12. OLIVIERA, L., BOUSGARBIES, J.L., PECHEUX, J., 1982, C.R.A.S., 294 II, 1163.Google Scholar
  13. ROBERTS, S.M., SHIPMAN, J.S., 1976, J. Fluid Mech., 73, 53.Google Scholar
  14. RUELLE, D., TAKENS, F., 1971, Com. Math. Phys. 20, 167 et 23, 343.CrossRefGoogle Scholar
  15. SCHLICHTING, H., 1979, Boundary-Layer Theory, Mc G. H. Book Company.Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • M. P. Chauve
    • 1
  • G. Tavera
    • 1
  1. 1.Institut de Mécanique Statistique de la TurbulenceMarseilleFrance

Personalised recommendations