Wavelength selection and pattern localization in buckling problems

  • M. Potier-Ferry
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 210)


Rectangular Plate Large Aspect Ratio Short Side Initial Displacement Wavelength Selection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J.C. AMAZIGO, B. BUDIANSKI, G.F. CARRIER: Asymptotic analysis of the buckling of imperfect columns on nonlinear elastic foundations, Int. J. Solids Structures, 6 (1970) p 1341–1356.CrossRefGoogle Scholar
  2. [2]
    M. BOUCIF, J.E. WESFREID, E. GUYON, Role of boundary conditions on mode selection in a buckling instability, to be published.Google Scholar
  3. [3]
    D.O. BRUSH, B.O. ALMROTH, Buckling of bars, plates and shells, Mc Graw-Hill, New-York (1975).Google Scholar
  4. [4]
    M. CLEMENT, E. GUYON, J.E. WESFREID, Multiplicité des modes de déformation d'une plaque sous compression, C.R. Acad. Sci. Paris, Série II, 293 (1981) p 87–89.Google Scholar
  5. [5]
    M.C. CROSS, P.G. DANIELS,, P.C. HÖHENBERG, E.D. SIGGIA, Phase-winding solutions in a finite container above the convective threshold, J. Fluid Mech. 127 (1983) p 155–183.Google Scholar
  6. [6]
    W.T. KOITER, On the stability of elastic equilibrium, Doctoral Dissertation, Delft (1945). English translation: N.A.S.A. Techn. Transl. F 10, 833 (1967).Google Scholar
  7. [7]
    L. KRAMER, P.C. HOHENBERG, Effect of boundary conditions on wavenumber selection in spatially varying steady states, to be published or this volume.Google Scholar
  8. [8]
    L. LANDAU, L. LHITZ, Theory of elasticity Pergamon Press New-York (1964).Google Scholar
  9. [9]
    C.G. LANGE, A.C. NEWELL, The postbuckling problem for thin shells, S.I.A.M.J. Appl. Math. 21 (1971) p 605–629.CrossRefGoogle Scholar
  10. [10]
    K.E. MOXHAM, Cambridge Univ. Engnrg Dept Reports, (1971).Google Scholar
  11. [11]
    A.C. NEWELL, J.A. WHITEHEAD, Finite bandwidth, finite amplitude convection, J. Fluid Mech. 38 (1969) p 279–303.Google Scholar
  12. [12]
    Y. POMEAU, Nonlinear pattern selection in a problem of elasticity, J. Physique Lett. 42 (1981) L 1.Google Scholar
  13. [13]
    Y. POMEAU, S. ZALESKI, Wavelength selection in one-dimensional cellular structures, J. Physique 42 (1981) p 515–528.Google Scholar
  14. [14]
    M. POTIER-FERRY, Amplitude modulation, phase modulation and localization of buckling patters, in “The buckling of structures in theory and practice“, Cambridge Univ. Press, Cambridge (1983).Google Scholar
  15. [15]
    L.A. SEGEL, Distant sidewalls cause slow amplitude modulation of cellular convection, J. Fluid Mech. 38 (1969) p 203–224.Google Scholar
  16. [16]
    V. TVERGAARD, A. NEEDLEMAN, On the localization of buckling patterns, J. Appl. Mech. 47 (1980) p 613–619.Google Scholar
  17. [17]
    V. TVERGAARD, A. NEEDLEMAN, On the development of localized buckling patterns, in “The buckling of structures in theory and practice“, Cambridge Univ. Press, Cambridge (1983).Google Scholar
  18. [18]
    N. YAMAKI, Postbuckling and imperfection sensitivity of circular cylindrical shells under compression, Proceedings 14th I.U.T.A.M. Congress, North-Holland, Amsterdam (1977) p 461–476.Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • M. Potier-Ferry
    • 1
  1. 1.Laboratoire de Mécanique ThéoriqueUniversité Pierre et Marie CurieParis Cedex 05

Personalised recommendations