Advertisement

Rayleigh-Benard instability : Experimental study of the wavenumber selection

  • B. Martinet
  • P. Haldenwang
  • G. Labrosse
  • J. C. Payan
  • R. Payan
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 210)

Abstract

We have presented an experiment in which the wavelength selection of parallel rolls pattern is studied for a large range of Rayleigh number. Far from the threshold, the domain of allowed wavenumbers, in our experiment, can be interpreted, to a certain extent, as being a simple distortion of the 2-D rolls linear stability domain /8/. However, when we approach the convection threshold, we must use a selection mechanism which takes into account the sidewalls, in order to interpret our results. Furthermore, our results present, at the vicinity of the threshold, a good quantitative agreement with Cross et al. predictions. The selected domain is reduced in regard to the stability region analysed by Busse and Clever.

Keywords

Rayleigh Number Selection Mechanism Stability Domain Good Quantitative Agreement Conductive Regime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. /1/.
    E.L. KOSCHMIEDER.-Adv. Chem. Phys., 26, p. 177–211 (1974).Google Scholar
  2. /2/.
    M.C. CROSS, P.G. DANIELS, P.C. HOHENBERG and E.D. SIGGIA.--Phys. Rev. Lett., 45, p. 898–901 (1980).-J. Fluid Mech., 127, p. 155–183 (1983).CrossRefGoogle Scholar
  3. /3/.
    Y. POMEAU and S. ZALESKI.-J. Physique, 42, p. 515–528 (1981).Google Scholar
  4. /4/.
    Y. POMEAU and P. MANNEVILLE.-Phys. Letters, 75A, p. 296–298 1980).Google Scholar
  5. /5/.
    G. AHLERS and R.P. BEHRINGER.-Phys. Rev. Lett., 40, p. 712–715 (1978).CrossRefGoogle Scholar
  6. /6/.
    B. MARTINET, P. HALDENWANG, G. LABROSSE, J.C. PAYAN, R. PAYAN. — J. Physique-Lettres, 43, p. L161–L169 (1982).Google Scholar
  7. /7/.
    H. OERTEL, Jr.-“Natural convection in enclosures“, presented at the National Heat Transfer Conference, Orlando, Florida. H.T.D., vol. 8 (ASME), p. 11–16 (1980).Google Scholar
  8. /8/.
    F.H. BUSSE and R.M. CLEVER.-J. Fluid Mech., 91, p. 319–335 (1979).Google Scholar
  9. /9/.
    J. MAURER and A. LIBCHABER.-J. Physique-Lettres, 41, p. L515–L518 (1980).Google Scholar
  10. /10/.
    P. MANNEVILLE and J.M. PIQUEMAL.-Phys. Rev. A, 28, p. 1774–1790 (1983).CrossRefGoogle Scholar
  11. /10/.
    J.M, PIQUEMAL.-Thèse de Troisième Cycle, Université Pierre et Marie Curie, Paris VI, (1982), (unpublished).Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • B. Martinet
    • 1
  • P. Haldenwang
    • 1
  • G. Labrosse
    • 1
  • J. C. Payan
    • 1
  • R. Payan
    • 1
  1. 1.Département d'HéliophysiqueUniversité de Provence, Centre de Saint JérômeMarseille Cedex 13France

Personalised recommendations