Cellular structures in instabilities : An introduction

  • J. E. Wesfreid
  • S. Zaleski
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 210)


Rayleigh Number Couette Flow Thermal Convection Convective Instability Large Aspect Ratio 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bénard, H.:“Les tourbillons cellullaires dans une nappe liquide”. Revue générale des sciences pures et appliquées, 11, 1261–1271 and 1309–1328 (1900).Google Scholar
  2. [2]
    Rayleigh, Lord: “On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side”. Phil. Mag. 32, 529–546 ( 1916 ).Google Scholar
  3. [3]
    Haken, H.: “Cooperative phenomena in systems far from thermal equilibrium and in non physical systems”. Rev. Mod. Phys. 47, 67–121 (1975).CrossRefGoogle Scholar
  4. [4]
    Order and fluctuations in equilibrium and non-equilibrium statistical mechanics. Ed: G. Nicolis, G. Dewel. and J.W. Turner, Wiley, New York, 1981.Google Scholar
  5. [5]
    Convective transport and instability phenomena. Ed: J. Zierep and H. Oertel Jr., G. Braun, Karlsruhe, 1982.Google Scholar
  6. [6]
    Wasiutynski, J.: “Studies in hydrodynamics and structure of stars and planets”. Astrophysica Norvegica, vol.4, J. Dybwad,Oslo, 1946Google Scholar
  7. [7]
    Problems of stellar convection. Ed.: E.A. Spiegel,and J.P. Zahn, Springer, Berlin., 1977.Google Scholar
  8. [8]
    Parsons, B. and McKenzie, D.: “Mantle convection and the thermal structure of the plates ”.J. Geophys. Res.83,4485–4496 (1978).Google Scholar
  9. [9]
    Froidevaux, C. and Nataf, H.C.: “Continental drift: What driving mechanism?”. Geol.Rundschau 70, 166–176 ( 1981).CrossRefGoogle Scholar
  10. [10]
    Ping Cheng and Lall Teckchandani.: “Numerical solutions for transient heating and fluid withdrawal in a liquid-dominated geothermal reservoir”. Geophysical Monograph 20, (p.705–721), The Earth's crust, by the American Geophysical Union, Washington, 1977.Google Scholar
  11. [11]
    Dubois Violette,E., Durand, G., Guyon, E., Manneville, P., and Pieranski, P.: “Instabilities in nematic liquid crystals”. Solid State Phys., Supp.14, p.147–208 (1978).Google Scholar
  12. [12]
    Dauzére, M.C.: “Solidification cellulaire”. Annales de Physique, Ser.9, t XII, p.7–106 + plates I-XII, (1919).Google Scholar
  13. [13]
    Görtler, H.: “On the three-dimensional instability of laminar boundary layers on concave walls”. N.A.C.A. Tech. Memo. 1375 (1954).Google Scholar
  14. [14]
    Koiter, W.T.: “ The stability of elastic equilibrium”. Tech. Rep. AFF DL-TR-70-25, Air Force flight dynamics laboratory, U.S.A. (1970).Google Scholar
  15. [15]
    Kragerup, J.: “Five notes on plate buckling”. Rep. R143 Dep. of Struct. Eng., Tech. Univ. of Denmark (1982).Google Scholar
  16. [16]
    The distinction between “small boxes“ and “large boxes“ was emphasized by P. Bergé: “Experiments on hydrodynamic instabilities and the transition to turbulence“ in Dynamical critical phenomena and related topics. Ed.: C.P. Enz, p.288–308, Springer, Berlin 1979.Google Scholar
  17. [17]
    Cloupeau, M., Klarsfeld, S. and Grossin, R.: “Visualisation d'isothermes dans un milieu poreux par effet Christiansen”. C.R. Acad. Sc. Paris, 269B, 163–166 ( 1969).Google Scholar
  18. [18]
    Ahlers, G.: “Heat capacity near the superfluid transition in He 4 at saturated vapor pressure”. Phys. Rev. A 3, 696–716 (1971).CrossRefGoogle Scholar
  19. [19]
    Bergé, P.: “Aspects expérimentaux de l'instabilité thermique de Rayleigh Bénard”. J. Physique, Colloque C1, 37, C1–C23 (1976).Google Scholar
  20. [20]
    Cooper, T.E., Field, R.J. and Meyer, J.F.: “Liquid crystal thermography and its application to study of convectioe heat transfer”. ASME Journal of Heat Transfer, 97, 442–450 (1975).Google Scholar
  21. [21]
    Oertel, H. and Kirchartz, K.R.: “Laser-anemointerferometer for simultaneous measurements of velocity and density”. Appl. Opt., 17, 3535–3538 (1978).Google Scholar
  22. [22]
    Meynart, R.: “Equal velocity fringes in a Rayleigh-Bénard flow by a speckle method”. Appl. Opt. 19, 1385–1386 (1980).Google Scholar
  23. [23]
    Moreno, J., Jimenez, J., Córdoba,J., Rojas, E. and Zamora, M.: “New experimental apparatus for the study of the Bénard-Rayleigh problem”. Rev. Sci. Instrum. 51, 82–85 (1980).CrossRefGoogle Scholar
  24. [24]
    Ernst, K. and Hoffman, J.J.: “Laser induced convection instability”. Phys. Lett. 87A, 133–136 (1981).Google Scholar
  25. [25]
    Ueda, M., Kagawa, K., Yamada, K., Yamaguchi, C., Harada, Y. “Flow visualization of Bénard convection using holographic interferometry”. Appl. Opt. 21, 3269–3272 (1982).Google Scholar
  26. [26]
    Koster, J.N.: “Interferometric investigation of convection in plexiglas boxes”. Experiments in Fluids 1, 121–128 (1983).Google Scholar
  27. [27]
    Chandrasekhar, S., Hydrodynamic and Hydromagnetic stability, Dover, 1981.Google Scholar
  28. [28]
    Gershuni, G.Z. and Zhukhovitskii,E.M., Convectioe stability of incompressible fluids, Keter Publishing House, Jerusalem, 1976.Google Scholar
  29. [29]
    Joseph, D.D., Stability of fluid motions, vol. II, Springer, Berlin, 1976.Google Scholar
  30. [30]
    Platten, J.K. and Legros, J.C., Convection in liquids, Springer, Berlin, 1983.Google Scholar
  31. [31]
    Lin, C.C., The theory of hydrodynamic stability. Cambridge University Press, Cambridge, 1955.Google Scholar
  32. [32a]
    Velarde, M. and Normand, C.: “Convection”. Scientific American 243, n°1, 92–108 ( 1980).Google Scholar
  33. [32b]
    Bergé, P. and Pomeau Y.: “La turbulence“, La Recherche 11, 422–432 (1980).Google Scholar
  34. [33]
    Hopfinger, E.J., Atten, P., Busse, F.H.: “Instability and convection in fluid layers: a report on Euromech 106”. J. Fluid. Mech. 92, 217–240 (1979).Google Scholar
  35. [34]
    Hydrodynamic stability and the transition to turbulence. Ed: Swinney,H.L., and Gollub, J.P., Springer, Berlin, 1981.Google Scholar
  36. [35]
    Stuart, J.T.:“ Nonlinear stability theory”. Ann. Rev. Fluid Mech. 3, 347–370 (1971).CrossRefGoogle Scholar
  37. [36]
    Koschmieder, E.L.: “Bénard Convection”. Adv. Chem. Phys. 26, 177–212 (1974).Google Scholar
  38. [37]
    Rogers, R.H.: “Convection”. Rep. Prog. Phys. 39, 1–63 (1976).CrossRefGoogle Scholar
  39. [38]
    Normand, C., Pomeau, Y. and Velarde, M.G.: “Convective instability A physicist's approach.“Rev. Mod. Phys. 49, 581–624 (1977).CrossRefGoogle Scholar
  40. [39]
    Busse, F.H.: “Non-linear properties of thermal convection”. Rep. Prog. Phys. 41, 1929–1967 (1978).CrossRefGoogle Scholar
  41. [40]
    Palm, E.: “Non linear thermal convection“ in Non linear phenomena at phase transition and instabilities. Ed: T.Riste, p.145–172, Plenum Press, New-York, 1981.Google Scholar
  42. [41]
    Di Prima, R.C. and Swinney, H.L.: “Instabilities and transition in flow between concentric rotating cylinders“, in ref.(34), p.139–180.Google Scholar
  43. [42]
    Stability of thermodynamic systems. Ed: J. Casas-Vásquez and G. Lebon, Springer, Berlin, 1982.Google Scholar
  44. [43]
    Woodruff, D.P., The solid-liquid interface. Cambridge University Press, London, 1973.Google Scholar
  45. [44]
    Langer, J.S.: “Instabilities and pattern formation in crystal growth”. Rev. Mod. Phys. 52, 1–28 (1980).CrossRefGoogle Scholar
  46. [45]
    Wesfreid, J., Pomeau, Y., Dubois, M., Normand, C. and Berge, P. “Critical effects in Rayleigh-Benard convection”. J. Physique 39, 725–731 (1978).Google Scholar
  47. [46]
    Swift, J. and Hohenberg, P.C.: “Hydrodynamic fluctuations at the convective instability”. Phys. Rev. A 15, 319–328 (1977).CrossRefGoogle Scholar
  48. [47]
    Graham, R.: “Hydrodynamic fluctuations near the convection instability”. Phys. Rev. A 10, 1762–1784 (1974).CrossRefGoogle Scholar
  49. [48]
    Lapwood, E.R.: “Convection of a fluid in a porous medium”. Proc. Camb. Phil. Soc. 44, 508–521 (1948).Google Scholar
  50. [49]
    Combarnous, M.A. and Bories, S.A.: “Hydrothermal convection in saturated porous media”. Adv. Hydro. Sci. 10, 231–307 (1975).Google Scholar
  51. [50]
    Elder, J.W.: “Steday free convection in a porous medium heated from below”. J. Fluid. Mech. 27, 29–48 (1967).Google Scholar
  52. [51]
    Lyubimov, D.V., Putin, G.F. and Chernatynskii, V.I.: “On convective motions in a Hele-Shaw cell”. Sov. Phys. Dokl. 22, 360–362 (1977).Google Scholar
  53. [52]
    Müller, U.: “Bénard convection in gaps and cavities“ in ref. 5 p.71–100.Google Scholar
  54. [53]
    Block, M.J.: “Surface tension as the cause of Bénard cells and surface deformation in a liquid film”. Nature 178, 650–651 (1956).Google Scholar
  55. [54]
    Pearson, J.R.A.: “On convection cells induced by surface tension”. J. Fluid Mech. 4, 489–500 (1958).Google Scholar
  56. [55]
    Velarde, M.G. and Castillo, J.L.: “Transport and reactive phenomena leading to interfacial instability”. [5]in ref. 5 p.235–264.Google Scholar
  57. [56]
    Linde, H.: “Marangoni instabilities”. in ref [5], p.265–296.Google Scholar
  58. [57]
    Malmejac, Y. Bewersdorff, A., Da Riva, I. and Napolitano, L.G.: “Microgravity research in space”. ESA-BR 05, European space agency, Paris, 1981.Google Scholar
  59. [58]
    Schechter, R.S., Velarde, M.G. and Platten, J.K.: “The two component Bénard problem”. Adv. Chem. Phys. 26, 265–301 (1974).Google Scholar
  60. [59]
    Turner, J.S., Buoyancy effects in fluids. Cambridge University Press, Cambridge, 1973.Google Scholar
  61. [60]
    De Gennes, P.G., The Physics of liquid crystal. Clarendon Press, Oxford, 1974.Google Scholar
  62. [61]
    Salan, J. and Guyon, E.: “Homeotropic nematics heated from above under magnetic fields:convective thresholds and geometry”. J.Fluid Mech. 126, 13–26 (1983).Google Scholar
  63. [62]
    Taylor, G.I.: “Stability of a viscous liquid contained between two rotating cylinders”. Phil. Trans. R. Soc. Lond. A223, 289–343 (1923).Google Scholar
  64. [63]
    Bippes, H.: “Experimental study of the laminar-turbulent transition in a concave wall of a parallel flow”. NASA Tech. Mem. TM 75243 (1978).Google Scholar
  65. [64]
    Floryan, J.M. and Saric, W.S.: “Stability of Görtler vortices in boundary layers”. AIAA Journal, 20, 316–324 (1982).Google Scholar
  66. [65]
    Herbert,Th.: “On the stability of the boundary layer along a concave wall”. Archives of Mechanics (Warszawa) 28, 1039–1055 (1976).Google Scholar
  67. [66]
    Gregory, N., Stuart, J.T. and Walker, W.S.: “On the stability of three dimensional boundary layers with application to the flow due to a rotating disk”. Phil. Trans. R. Soc. Lond. A248, 155–199 (1955).Google Scholar
  68. [67]
    Kobayashi, R., Kohama, Y. and Takamadate, Ch.: “Spiral vortices in boundary layer transition regime on a rotating disk”. Acta Mechanica 35, 71–82 (1980).CrossRefGoogle Scholar
  69. [68]
    Drazin, P.G. and Reid, W.H., Hydrodynamic stability. Cambridge University Press, Cambridge, 1981.Google Scholar
  70. [69]
    Atten, P., Lacroix, J.C. and Malraison, B.: “Chaotic motion in a Coulomb force driven instability:large aspect ratio experiments”. Phys. Lett. 79A, 255–258 (1980).Google Scholar
  71. [70]
    Felici, N.: “Phénomènes hydro et aérodynamiques dans la conduction des diélectriques fluides”. Revue Générale de l'Électricité 78, 717–734 (1969).Google Scholar
  72. [71a]
    Williams, R.: “Domains in liquid crystals”. J. Chem. Phys. 39, 384–386 (1963).Google Scholar
  73. [71b]
    Kapustin, A.P. and Vismin, L.K.: “Ferroelectric properties of liquid crystals”. Sov. Phys.-Crystallography 10, 95–97 (1965).Google Scholar
  74. [72]
    Langer, J.S. and Müller-Krumbhaar, H.: “Theory of dendritic growth I: Elements of a stability analysis”. Acta Metall. 26, 1681–1687 (1978).CrossRefGoogle Scholar
  75. [73]
    Langer, J.S. and Müller-Krumbhaar, H.: “Theory of dendritic growth II: Instabilities in the limit of vanishing surface tension”. Acta Metall. 26, 1689–1695 (1978).CrossRefGoogle Scholar
  76. [74]
    Müller-Krumbhaar, H. and Langer, J.S.: “Theory of dendritic growth III: Effects of surface tension”. Acta Metall. 26, 1697–1708 (1978)CrossRefGoogle Scholar
  77. [75]
    “Propriétés dynamiques des fronts de flamme”. Images de 1a Physique, Supp. au n°39 du Courrier du C.N.R.S., 22–26 (1981).Google Scholar
  78. [76]
    Clavin, P.: “Dynamical behaviour of premixed flames fronts in laminar and turbulent flows”. To appear in Prog. Energ. Comb. Sci. (1984).Google Scholar
  79. [77]
    Zaikin, A.N. and Zhabotinskii, A.M.: “Concentration wave propagation in two dimensional liquid phase self oscillating system”. Nature 225, 535–537 (1970).CrossRefGoogle Scholar
  80. [78]
    Schliomis, M.J.: “Magnetic Fluids”. Sov. Phys. Usp. 17, 153–169 (1974).Google Scholar
  81. [79]
    Rosensweig, R.E.: “Fluid dynamics and science of magnetic liquids”. Adv. in Electronics and Electron Physics 48, 103–199 (1978).Google Scholar
  82. [80]
    Levandowsky, M., Childress, W.S., Spiegel, E.A. and Hutner, S.H. “A Mathematical Model of Pattern Formation by Swimming Microorganisms“ J. Protozool. 22, 296–306 (1975).PubMedGoogle Scholar
  83. [81]
    Von der Malsburg, C. and Cowan, J.D.: “Outline of a theory for the ontogenesis of Iso-Orientation domains in visual cortex“ Biol. Cybern 45, 49–56 (1956).CrossRefGoogle Scholar
  84. [82]
    Bienenstock, E.: “Cooperation and competition in central nervous system development: a unifying approach“, in Synergetics of the brain. Ed: E. Baszar et al. p.250–263, Springer, Berlin, 1983.Google Scholar
  85. [83]
    Swindale, N.V.: “A model for the formation of orientation columns”. Proc. R. Soc. Lond. B215, 211–230 (1982).Google Scholar
  86. [84]
    Sorokin, V.S.: “Stationary motions in a fluid heated from below”. (in Russian). Prikl. Plat. Mekh. 18, 197–204 (1954).Google Scholar
  87. [85]
    Schlüter, A., Lortz, P. and Busse, F.H.: “On the stability of steady finite amplitude convection ”. J. Fluid Mech. 23, 129–144 (1965).Google Scholar
  88. [86]
    Malkus, W.V.R. and Veronis, G.: “Finite amplitude cellular convection”. J. Fluid Mech. 4, 225–260 (1958).Google Scholar
  89. [87]
    Gork'ov, L.P.: “Stationary convection in a plane liquid layer near the critical heat transfer point”. Sov. Phys. JETP 6, 311–315 (1958).Google Scholar
  90. [88]
    Sorokin, V.S.: “Variational method in the theory of convection”. (in Russian). Prikl. Mat. Mekh. 17, 39–48 (1953).Google Scholar
  91. [89]
    Dubois, M. and Berge, P.: “Experimental study of the velocity field in Rayleigh-Bénard convection”. J. Fluid Mech. 85, 641–653 (1978).Google Scholar
  92. [90a]
    Ponomarenko,I.B.:“Processes formation of hexagonal convective cells”. Prikl Mat. Mekh. 32, 234–245 (1968).Google Scholar
  93. [90b]
    Buzano, E. and Golubitsky, M.: “Bifurcation on the hexagonal lattice and the planar Benard problem”. Phil. Trans. R. Soc. Lond. A308, 617–667 (1983).Google Scholar
  94. [91]
    Krishnamurti, R.: “Finite amplitude convection with changing mean temperature Part 1: Theory. Part 2: An experimental test of the theory”. J. Fluid Mech. 33, 445–455 and 457-463 (1968).Google Scholar
  95. [92]
    Richter, F.M.:“Experiments on the stability of convection rolls in fluids whose viscosity depends on temperature”. J. Fluid Mech. 89, 553–560 (1978).Google Scholar
  96. [93]
    Dubois, M., Berge, P. and Wesfreid, J.: “Non-Boussinesq convective structures in water near 4°C”. J. Physique 39, 1253–1257 (1978).Google Scholar
  97. [94]
    Whitehead, J.A., Jr.: “Cellular convection”. American Scientist 59, 444–451 (1971).Google Scholar
  98. [95]
    Whitehead, J.A.: “Dislocations in convection and the onset of chaos”. Phys. Fluids 26, 2899–2904 (1983).CrossRefGoogle Scholar
  99. [96]
    Straus, J.M. and Schubert, G.: “On the existence of three dimensional convection in a rectangular box containing fluid saturated porous material“ J. Fluid Mech. 87, 385–394 (1978).Google Scholar
  100. [97a]
    Busse, F.H. and Riahi, N.: “Nonlinear convection in a layer with nearly insulating boundaries”. J. Fluid Mech. 96, 243–256 (1980).Google Scholar
  101. [97b]
    Riahi, N.: “On convection with nearly insulating boundaries in a low Prandtl number fluid”. Z.A.M.P. 31, 261–266 (1980).CrossRefGoogle Scholar
  102. [98]
    Dubois, M., Normand, C. and Bergé, P.:“Wavenumber dependence of velocity field amplitude in convection rolls — theory and experiments”. Int. J. Heat Mass Transfer 21, 999–1002 (1978).CrossRefGoogle Scholar
  103. [99a]
    Segel,L.A.and Stuart, J.T.: “On the question of the preferred mode in cellular thermal convection”. J. Fluid Mech. 13, 289–306 (1962).Google Scholar
  104. [99b]
    Stuart, J.T.: “On the cellular patterns in thermal convection”. J. Fluid Mech. 18, 481–498 (1964).Google Scholar
  105. [100]
    Stein, M.: “Loads and deformations of buckled rectangular plates”. NACA Tech. Rep. R 40 (1959).Google Scholar
  106. [101]
    Koschmieder, E.L.: “On the wavelength of convective motions”. J. Fluid Mech. 35, 527–530 (1969).Google Scholar
  107. [102]
    Eckhaus, W., Studies in non linear stability theory, Springer, Berlin, 1965.Google Scholar
  108. [103]
    Kogelman, S. and Di Prima, R.C.: “Stability of spatially periodic supercritical flows in hydrodynamics”. Phys. Fluids. 13, 1–11 (1970).CrossRefGoogle Scholar
  109. [104]
    Di Prima, R.C., Eckhaus, W. and Segel, L.A.:“Non-linear wave-number interaction in near-critical two dimensional flows”. J. Fluid Mech. 49, 705–744 (1971).Google Scholar
  110. [105]
    Stuart, J.T. and Di Prima, R.C.: “The Eckhaus and Benjamin-Feir resonance mechanisms”. Proc. R. Soc. Lond. A362, 27–41 (1978).Google Scholar
  111. [106]
    Pomeau, Y. and Manneville, P.: “Stability and fluctuations of a spatially periodic convective flow”. J. Physique Lett. 40, L609–L612 (1979).Google Scholar
  112. [107]
    Pomeau, Y.: “Non linear pattern selection in a problem of elasticity”. J. Physique Lett. 42, L1–L4 (1981).Google Scholar
  113. [108]
    King, G.P. and Swinney, H.L.: “Limits of stability and irregular flow patterns in wavy vortex flow”. Phys. Rev. A27, 1240–1243 (1983).Google Scholar
  114. [109]
    Cole, J.A.: “Taylor vortex instability and annulus length effects”. J. Fluid Mech. 75, 1–15 (1976).Google Scholar
  115. [110]
    Hall, P. and Walton, I.C.: “The smooth transition to a convective regime in a two-dimensional box”. Proc. R. Soc. Lond. A 358, 199–221 (1977).Google Scholar
  116. [111]
    Daniels, P.G.: “The effect of distant sidewalls on the transition to finite amplitude Bénard convection”. Proc. R. Soc. Lond. A358, 173–197 (1977).Google Scholar
  117. [112]
    Benjamin, T.B. and Mullin, T.: “Anomalous modes in the Taylor experiment”. Proc. R. Soc. Lond. A377, 221–249 (1981).Google Scholar
  118. [113]
    Krishnamurti, R.: “On the transition to turbulent convection. Part 1: The transition from two to three dimensional flow”. J. Fluid. Mech. 42, 295–307 (1970).Google Scholar
  119. [114]
    Pomeau, Y. and Manneville, P.: “Wavelength selection in cellular flows”. Phys. Lett. 75A, 296–298 (1980).Google Scholar
  120. [115]
    Getling, A.V.: “Evolution of two-dimensional disturbances in the Rayleigh-Bénard problem and their preferred wavenumbers”. J. Fluid Mech. 130, 165–186 (1983).Google Scholar
  121. [116]
    Berdnikov, V.S. and Kirdyashkin, A.G.: “On the spatial structure of cellular convection”. Isvestiya, Atmospheric and Oceanic Physics 15, 561–565 (1979).Google Scholar
  122. [117]
    Snyder, H.A.:“Wave-number selection at finite amplitude in rotating Couette flow”. J. Fluid Mech. 35, 273–298 (1969).Google Scholar
  123. [118]
    Schaeffer, D. and Golubitsky, M.: “Boundary conditions and mode jumping in the buckling of a rectangular plate”. Comm. Math. Phys. 69, 209–236 (1979).CrossRefGoogle Scholar
  124. [119]
    Pomeau, Y. and Zaleski, S.: “Wavelength selection in one dimensional cellular structures”. J. Physique 42, 515–528 (1981).Google Scholar
  125. [120]
    Cross, M.C., Daniels, P.G., Hohenberg,P.C. and Siggia, E.D. “Phase-winding solutions in a finite container above the convective threshold”. J. Fluid Mech. 127, 155–183 (1983).Google Scholar
  126. [121]
    Clement, M., Guyon, E. and Wesfreid, J.E.: “Multiplicité de modes de déformation d'une plaque sous compression-Expérience”. C.R. Acad. Sci. Paris 293II, 87–89 (1981).Google Scholar
  127. [122]
    Mullin, T.: “Mutations of steady cellular flows in the Taylor experiment”. J. Fluid Mech. 121, 207–218 (1982).Google Scholar
  128. [123]
    Potier Ferry, M.: “Amplitude modulation, phase modulation and localization of buckling patterns“ in Collapse: the buckling of structures in theory and practice. Ed: J.M.T. Thompson and G.W. Hunt, p.149–159, Cambridge University Press, 1983.Google Scholar
  129. [124]
    Langer, J.S.: “Eutectic solidification and marginal stability”. Phys. Rev. Lett. 44, 1023–1026 (1980).CrossRefGoogle Scholar
  130. [125]
    Pomeau, Y. and Manneville, P.: “Wavelength selection in axisymetric cellular structures”. J. Physique 42, 1067–1074 (1981).Google Scholar
  131. [126]
    Manneville, P. and Piquemal, J.M.: “Zig-Zag instability and axisymmetric rolls in Rayleigh-Bénard convection: the effect of curvature”. Phys. Rev. A 28, 1774–1790 (1983).CrossRefGoogle Scholar
  132. [127]
    Atten, P. and Wesfreid, J.E.: “Wavenumber variations of spatially damped Rayleigh-Bénard convection”. Phys. Fluids 24, 173–174 (1981).CrossRefGoogle Scholar
  133. [128]
    Kramer, L., Ben-Jacob, E., Brand, H. and Cross, M.C.: “Wavelength selection in systems far from equilibrium”. Phys. Rev. Lett. 49, 1891–1894 (1982).CrossRefGoogle Scholar
  134. [129]
    Pomeau, Y. and Zaleski, S.: “Pattern selection in a slowly varying environment”. J. Physique Lett. 44, L135–L141 (1983).Google Scholar
  135. [130]
    Cannell,S. Dominguez-Lerma, M.A. and Ahlers, G.: “Experiments on wavenumber selection in rotating Couette-Taylor flow”. Phys. Rev. Lett. 50, 1365–1368 (1983).CrossRefGoogle Scholar
  136. [131]
    Siggia, E.D. and Zippelius, A.: “Dynamics of defects in Rayleigh-Bénard convection”. Phys. Rev. A 24, 1036–1049 (1981).CrossRefGoogle Scholar
  137. [132]
    Pomeau, Y., Zaleski, S. and Manneville, P.: “Dislocation motion in cellular structures”. Phys. Rev. A 27, 2710–2726 (1983).CrossRefGoogle Scholar
  138. [133]
    Manneville, P. and Pomeau, Y.: “A grain boundary in cellular structures near the onset of convection”. Phil. Mag. A 48, 607–621 (1983).Google Scholar
  139. [134]
    Stork, K. and Müller, U.: “Convection in boxes: experiments”. J. Fluid Mech. 54, 599–611 (1972).Google Scholar
  140. [135]
    Stork, K. and Müller, U.: “Convection in boxes: an experimental investigation in vertical cylinders and annuli”. J. Fluid Mech. 71, 231–240 (1975).Google Scholar
  141. [136]
    Bergé, P., Dubois, M. and Croquette, V.: “Approach to Rayleigh-Bénard turbulent convection in different geometries”. In [5]. Ed: J. Zierep and H. Oertel Jr., G. Braun, Karlsruhe, 1982, p.123–148.Google Scholar
  142. [137]
    Bergé, P.: “Rayleigh-Bénard convection in high Prandtl number fluid”. in: Chaos and Order in Nature. Ed: H. Haken, p.14–24, Springer, Berlin, 1981.Google Scholar
  143. [138]
    Dreyfus, J.M. and Guyon, E.: “Convective instabilities in nematics caused by an elliptical shear”. J. Physique 42, 283–292 (1981).Google Scholar
  144. [139]
    Kai, S. and Hirakawa, K.: “Succesive transitions in electrohydro-dynamic instabilities of nematics”. Supp. Prog. Theor. Phys. 64, 212–243 (1978).Google Scholar
  145. [140]
    Chen, M.M. and Whitehead, J.A.: “Evolution of two-dimensional periodic Rayleigh convection cells of arbitrary wavenumbers”. J. Fluid Mech. 31, 1–15 (1968).MathSciNetGoogle Scholar
  146. [141]
    Busse, F.H. and Whitehead, J.A.: “Instabilities of convection rolls in a high Prandtl number fluid”.J.Fluid Mech.47,305–320 ( 1971).MathSciNetGoogle Scholar
  147. [142]
    Whitehead, J.A.: “The propagation of dislocations in Rayleigh-Bénard rolls and bimodal flow”. J. Fluid Mech. 75, 715–720 (1976).Google Scholar
  148. [143]
    Donnelly, R.J., Park, K., Shaw, R. and Walden, R.W.: “Early non-periodic transitions in Couette flow”. Phys. Rev. Lett. 44, 987–989 (1980).CrossRefGoogle Scholar
  149. [144]
    Guazzelli, E.: “Nucleation homogène d'une paire de défauts dans une structure convective périodique”. CR. Acad. Sc. Paris 291B, 9–12 (1980).Google Scholar
  150. [145]
    Guazzelli, E., Guyon, E. and Wesfreid, J.E.: “Defects in convective structures in a nematic hydrodynamic instability“ in: Symmetries and broken symmetries in condensed matter physics. Ed: N. Boccara, p.455–461, IDSET, Paris, 1981.Google Scholar
  151. [146]
    Croquette, V., Mory, M. and Schosseler, F.: “Rayleigh-Bénard convective structures in a cylindrical container”. J. Physique 44, 293–301 (1983).Google Scholar
  152. [147]
    Dreyfus, J.M. and Pieranski, P.: “Distortion waves and phase slip-page in nematics”. J. Physique 42, 459–467 (1981).Google Scholar
  153. [148]
    Gollub, J.P. and Steinman, J.F.: “Doppler imaging of the onset of turbulent convection”. Phys. Rev. Lett. 47, 505–508 (1981).CrossRefGoogle Scholar
  154. [149]
    Gollub, J.P., Mc Carriar, A.R. and Steinman, J.F.: “Convective pattern evolution and secondary instabilities”. J. Fluid Mech. 125, 259–281 (1982).Google Scholar
  155. [150]
    “Morphologie des structures dissipatives”. Images de la Physique, Suppl. au n°39 du Courrier du C.N.R.S., 11–16 (1981).Google Scholar
  156. [151]
    Kleman, M.: Points, lignes et parois, Vol. 1. Les Editions de Physique, Paris, 1977.Google Scholar
  157. [152]
    Cross, M.C.: “Ingredients of a theory of convectioe textures close to onset”. Phys. Rev. A 25, 1065–1076 (1982).CrossRefGoogle Scholar
  158. [153]
    Zaleski, S., Pomeau, Y. and Pumir, A.: “Optimal merging of rolls near a plane boundary”. Phys. Rev. A 29, 366–370 (1984).CrossRefGoogle Scholar
  159. [154]
    Dubois Violette, E., Guazzelli, E. and Prost, J.: “Dislocation motion in layered structures”. Phil. Mag. A 48, 727–747 (1983).Google Scholar
  160. [155]
    Ahlers, G.: “Onset on convection and turbulence in a cylindrical container“ in Systems far from equilibrium. Ed: L.Garrido,p.143–161: Springer, Berlin, 1980.Google Scholar
  161. [156]
    Bidaux, R., Boccara, N., Sarma, G., de Sèze, L., de Gennes, P.G. and Parodi, O.: “Statistical properties of focal conic textures in smectic liquid crystals”. J. Physique 34, 661–672 (1973).Google Scholar
  162. [157]
    Mandelbrot, B., Fractals: form, chance,and dimension. Freeman and Co, p. 185–188, San Francisco, 1977.Google Scholar
  163. [158]
    Greenside, H.S., Coughran, W.M. Jr. and Schryer, N.L.:“Nonlinear pattern formation near the onset of Rayleigh-Bénard convection”. Phys. Rev. Lett. 49, 726–729 (1982).CrossRefGoogle Scholar
  164. [159]
    Segel, L.A.: “Distant side walls cause slow amplitude modulation of cellular convection”. J. Fluid Mech. 38, 203–224 (1969).Google Scholar
  165. [160]
    Newell, A.C. and Whitehead, J.A.: “Finite bandwidth, finite amplitude convection”. J. Fluid Mech. 38, 279–303 (1969).Google Scholar
  166. [161]
    Graham, R. and Domaradzki, J.A.: “The local amplitude equation of Taylor vortices and its boundary condition”. Phys. Rev. A 26, 1572–1579 (1982).CrossRefGoogle Scholar
  167. [162]
    Wesfreid, J., Bergé, P. and Dubois, M.: “Induced pretransitional Rayleigh-Bénard convection”. Phys. Rev. A 19, 1231–1233 (1979).CrossRefGoogle Scholar
  168. [163]
    Pfister, G. and Rehberg, I.: “Space-dependent order parameter in circular Couette flow transitions”. Phys. Lett. 83A, 19–22 (1981).Google Scholar
  169. [164]
    Brown, S.N. and Steuartson K.: “On thermal convection in a large box”. Studies in Appl. Math. 57, 187–204 (1977).Google Scholar
  170. [165a]
    Brown, S.N. and Stewartson, K.: “On finite amplitude Bénard convection in a cylindrical container”. Proc. R. Soc. Lond. A 360, 455–469 (1978).Google Scholar
  171. [165b]
    Brown, S.N. and Stewartson, K.: “On finite amplitude Bénard convection in a cylindrical container. Part II”. SIAM J. Appl.Math. 36, 573–586 (1979).CrossRefGoogle Scholar
  172. [166]
    Siggia, E.D. and Zippelius, A.: “Pattern selection in Rayleigh-Bénard convection near threshold”. Phys. Rev. Lett. 47, 835–838 (1981).CrossRefGoogle Scholar
  173. [167]
    in ref. [29] page 128.Google Scholar
  174. [168]
    Manneville, P.: “A two dimensional model of three dimensional Convective pattern in wide containers”. J. Physique 44, 759–765 (1983).Google Scholar
  175. [169]
    Wesfreid, J.E. and Croquette, V.: “Forced phase diffusion in Rayleigh-Benard convection”. Phys. Rev. Lett. 45, 634–637 (1980).CrossRefGoogle Scholar
  176. [170]
    Croquette, V. and Wesfreid, J.E.: “Phase diffusion experiment in Rayleigh-Bénard convection“ in: Symmetries and broken symmetries in condensed mattez physics”. Ed: N. Boccara, p.399–406, IDSET, Paris, 1981.Google Scholar
  177. [171]
    Croquette, V. and Schosseler, F.: “Diffusive modes in Rayleigh-Bénard structures”. J. Physique 43, 1183–1191 (1982).Google Scholar
  178. [172]
    Manneville, P. and Piquemal, J.M.: “Transverse phase diffusion in Rayleigh-Bénard convection”. J. Physique Lett. 43, L253–L258 (1982).Google Scholar
  179. [173]
    Guazzelli, E., Guyon, E. and Wesfreid, J.E.: “Dislocations in a roll hydrodynamic instability in nematics: static limit”. Phil. Mag. A 48, 709–726 (1983).Google Scholar
  180. [174]
    Dowel, G., Walgraef, D. and Borckmans, P.:“Layered structures in twodimensional nonequilibrium systems”. J. Physique Lett. 42, L361–L364 (1981).Google Scholar
  181. [175]
    Alziary de Roquefort, T. and Grillaud, G.: “Computation of Taylor vortex flow by a transient implicit method”. Comp. Fluids 6, 259–269 (1978).CrossRefGoogle Scholar
  182. [176]
    Davies-Jones, R.P.: “Thermal convection in a infinite channel with no-slip sidewalls”. J. Fluid Mech. 44, 695–704 (1970).Google Scholar
  183. [177]
    Oertel, H. Jr.: “Thermal instabilities“ in [5]. Ed: J. Zierep and H. Oertel Jr., G. Braun, Karlsruhe, 1982 p.3–24.Google Scholar
  184. [178]
    Bauer, L. and Reiss, E.L.: “Non linear buckling of rectangular plates”. J. Soc. Indust. Appl. Math. 13, 603–626 (1965).CrossRefGoogle Scholar
  185. [179]
    Normand, C.: “Convective flow patterns in rectangular boxes of finite extent”. ZAMP 32, 81–96 (1981).CrossRefGoogle Scholar
  186. [180]
    Tabeling, P.: “Convective flow patterns in rectangular boxes of finite extent under an external magnetic field”. J. Physique 43, 1295–1303 (1982).Google Scholar
  187. [181]
    Brazovskii, S.A.: “Phase transition of an isotropic system to a nonuniform state”. Sov. Phys.-JETP 41, 85–89 (1975).Google Scholar
  188. [182]
    Sazontov, A.G.: “Concerning the selection of convective structures in a fluid with temperature dependent viscosity”. Isvestiya, Atmospheric and Oceanic Physics 16, 319–324 (1980).Google Scholar
  189. [183]
    Bestehorn, M. and Haken, H.: “A calculation of transient solutions describing roll and hexagon formation in the convection instability”. Phys. Lett. 99A, 265–267 (1983).Google Scholar
  190. [184]
    Eckmann, J.P.: “Roads to turbulence in dissipative dynamical systems”. Rev. Mod. Phys. 53, 643–654 (1981).CrossRefGoogle Scholar
  191. [185]
    Ott, E.: “Strange attractors and chaotic motions of dynamical systems”. Rev. Mod. Phys. 53, 655–672 (1981).CrossRefGoogle Scholar
  192. [186]
    Ahlers, G. and Behringer, R.P.: “Evolution of turbulence from the Rayleigh-Bénard instability”. Phys. Rev. Lett. 40, 712–716 (1978).CrossRefGoogle Scholar
  193. [187]
    Behringer, R.P., Shaumeyer, J.N., Clark, C.A. and Agosta, C.C. “Turbulent onset in moderately large convectiog layers”. Phys. Rev. A 26, 3723–3726 (1982).CrossRefGoogle Scholar
  194. [188]
    Fauve, S., Laroche, C. and Libchaber, A.: “Effect of a horizontal magnetic field on convective instabilities in mercury”. J. Physique Lett. 42, L455–L457 (1981).Google Scholar
  195. [189]
    Kuramoto, Y.: “Diffusion-induced chemical turbulence” in: Dynamics of synergetic systems. Ed: H. Haken, p.134–146, Springer, Berlin, 1980.Google Scholar
  196. [190]
    Sivashinsky, G.I.: “Non linear analysis of hydrodynamic instability in laminar flames. I: Derivation of basic equations”. Acta Astronautica 4, 1177–1206 (1977).CrossRefGoogle Scholar
  197. [191]
    Lin, J. and Kahn, P.B.: “Order and turbulence in ore dimension“ in Systems far from equilibrium. Ed: L. Garrido, p.345–351, Springer, Berlin, 1980.Google Scholar
  198. [192]
    Gertsberg, V. and Sivashinsky, G.: “Large cells in non linear Rayleigh-Bénard convection”. Progr. Theor. Phys. 66, 1219–1229 (1981).Google Scholar
  199. [193]
    Chapman, C.J. and Proctor, M.R.E.: “Nonlinear Rayleigh-Bénard convection between poorly conducting boundaries”. J. Fluid Mech. 101, 759–782 (1980).Google Scholar
  200. [194]
    Tabeling, P.: “Dynamics of the phase variable in the Taylor vortex system”. J. Physique Lett. 44, L665–L672 (1983).Google Scholar
  201. [195]
    Koschmieder, E.L.: “Turbulent Taylor vortex flow”. J. Fluid Mech. 93, 515–527 (1979) and Addendum 93, 801 (1979).Google Scholar
  202. [196]
    Barcilon, A.,Brindley, J., Lessen, M. and Mobbs, F. R.: “Marginal instability in Taylor-Couette flows at a very high Taylor number”. J. Fluid Mech. 94, 453–463 (1979).Google Scholar
  203. [197]
    Krishnamurti,R. and Howard, L.N.: “Large scale flow generation in turbulent convection”. Proc. Natl. Acad. Sci. USA 78, 1981–1985 (1981).Google Scholar
  204. [198]
    Kosterlitz, J.M. and Thouless, D.J.: “Ordering, metastability and phase transitions in two dimensional systems”. J. Phys. C 6, 1181–1203 (1973).CrossRefGoogle Scholar
  205. [199]
    Nelson, D.R. and Halperin, B.I.: “Dislocation-mediated melting in two dimensions”. Phys. Rev. B 19, 2457–2484 (1979).CrossRefGoogle Scholar
  206. [200]
    Toner, J. and Nelson, D.R.: “Smectic,cholesteric and Rayleigh-Bénard order in two dimensions”. Phys. Rev. B 23, 316–334 (1981).CrossRefGoogle Scholar
  207. [201]
    Lowe, M., Gollub, J.P. and Lubensky, T.C.: “Commensurate and incommensurate structures in a non-equilibrium system”. Phys. Rev. Lett. 51, 786–789 (1983).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • J. E. Wesfreid
    • 1
  • S. Zaleski
    • 2
  1. 1.LHMP - ERA N°1000 -C.N.R.S.Ecole Supérieure de Physique et Chimie de ParisParis Cedex 05France
  2. 2.Groupe de Physique des Solides de l'Ecole Normale SupérieureParis Cedex 05France

Personalised recommendations