Advertisement

Determination of molecular orientation by spectroscopic techniques

  • I. M. Ward
Conference paper
Part of the Advances in Polymer Science book series (POLYMER, volume 66)

Abstract

The aim of this review article is to discuss the type of information which can be obtained concerning orientation in polymers by spectroscopic methods and to select examples which illustrate key problems in the area of polymer physics.

As a prelude to the discussion it is necessary to consider the definition of orientation in terms of the Euler angles, and the definition of an orientation distribution function in terms of an expansion of Legendre functions. These definitions set the scene for examining the information which can be obtained from different spectroscopic techniques. In this review, infra-red and Raman spectroscopy and nuclear magnetic resonance, will be considered.

Information on molecular orientation can be useful in two primary ways. First, it is possible to use the orientation functions or averages to gain an understanding of the mechanisms of plastic deformation. Secondly the orientation averages can provide a basis for understanding the influence of molecular orientation on physical properties, especially mechanical properties.

Keywords

Spectroscopic Technique Draw Ratio Polyethylene Terephthalate Orientation Distribution Function Molecular Orientation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Symbols

A

Absorption

D

Optical density

E

Electric vector

fa

Amorphous orientation average

fc

Crystalline orientation average

I

Nuclear spin number

Is

Scattered intensity

I′

Scattered intensity

IT

Transmitted intensity

ki

Imaginary part of complex principal refractive index

Δn

Birefringence

ni

Real part of complex principal refractive index

N

Number of absorbing species per unit volume, Number of nuclei over which sum is taken

N′

Number of random links per chain

N(ϑ, φ, ψ)

Distribution function of orientation for structural units

N′(β, γ)

Distribution function of orientation for spectroscopic effect studied

No

Number of effective scatterers

p1mn

Spherical harmonic function

P1mn

Averages of p1mn

r

Ratio of principal components of differential polarizability tensor

rj

Direction in a structural unit

S

Lattice sum

xcryst

Crystalline fraction

xtrans

Fraction of trans conformers

xi

Rectangular coordinate axes in a structural unit

Xi

Rectangular coordinate axes in the sample

Y1me

Generalised Legendre function

Z1mn

Generalised Legendre function

αi

Principal component of differential polarizability tensor

αie

Principal component of electronic polarizability tensor

β

Polar angle defined with respect to a structural unit

γ

Azimuthal angle defined with respect to a structural unit

λ

Infra-red wavelength, Draw ratio

μ

Transition dipole moment

μn

Nuclear Magneton

ϱ(ϑ, φ)

Distribution function

ϑ

Euler angle

φ

Euler angle

ψ

Euler angle

φi

Infra-red quantity

ξ

Polar angle defined with respect to sample

η

Azimuthal angle defined with respect to sample

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

9 References

  1. 1.
    Nobbs, J. H., Ward, I. M.: Polarized fluorescence in oriented polymers, in: Photoluminescence of Synthetic Polymers (ed.) Phillips, D. C. Chap. 7, Chapman & Hall Ltd., London (1984)Google Scholar
  2. 2.
    Ward, I. M.: Structure and Properties of Oriented Polymers, Applied Science Publishers Ltd., London (1975)Google Scholar
  3. 3.
    Ward, I. M.: J. Polym. Sci., Polymer Symposium 58, 1 (1977)Google Scholar
  4. 4.
    Cunningham, A., Davies, G. R. and Ward, I. M.: Polymer 15, 743 (1974)Google Scholar
  5. 5.
    Jarvis, D. A. et al.: Polymer 21, 41 (1980)Google Scholar
  6. 6.
    Hutchinson, I. J. et al.: Polymer 21, 55 (1980)Google Scholar
  7. 7.
    Bower, D. I.: J. Polym. Sci., Polym. Phys. Edn. 10, 2135 (1972)Google Scholar
  8. 8.
    Van Vleck, J. H.: Phys. Rev. 74, 1168 (1949)Google Scholar
  9. 9.
    McBrierty, V. J., Ward, I. M.: J. Phys. D. Appl. Phys. 1, 1529 (1968)Google Scholar
  10. 10.
    Kashiwagi, M. et al.: Polymer 14, 111 (1973)Google Scholar
  11. 11.
    Cunningham, A., Manuel, A. J., Ward, I. M.: Polymer 17, 125 (1976)Google Scholar
  12. 12.
    McBrierty, V. J., McDonald, I. R., Ward, I. M.: J. Phys. D. Appl. Phys. 4, 88 (1971)Google Scholar
  13. 13.
    Bower, D. I.: J. Polym. Sci.; Polym. Phys. Edn. 19, 93 (1981)Google Scholar
  14. 14.
    Kratky, O.: Kolloid Z. 64, 213 (1933)Google Scholar
  15. 15.
    Ward, I. M.: Mechanical Properties of Solid Polymers. Second Edition, p. 287. John Wiley & Sons, Ltd., Chichester, (1983)Google Scholar
  16. 16.
    Richardson, I. D., Ward, I. M.: J. Phys. D. Appl. Phys. 3, 643 (1970)Google Scholar
  17. 17.
    Cunningham, A.: Ph. D. Thesis, Leeds University (1974)Google Scholar
  18. 18.
    R. S. SteinGoogle Scholar
  19. 19.
    Kuhn, W., Grün, W.: Kolloid Z. 101, 248 (1942)Google Scholar
  20. 20.
    Treloar, L. R. G.: Trans. Faraday Soc. 50, 881 (1954)Google Scholar
  21. 21.
    Roe, R. J., Krigbaum, W. R.: J. Appl. Phys. 35, 2215 (1964)Google Scholar
  22. 22.
    Purvis, J., Bower, D. I.: J. Polym. Sci., Polym. Phys. Ed. 14, 1461 (1976)Google Scholar
  23. 23.
    Nobbs, J. H., Bower, D. I.: Polymer 19, 1100 (1978)Google Scholar
  24. 24.
    Nobbs, J. H., Bower, D. I., Ward, I. M.: J. Polym. Sci., Polym. Phys. Ed. 17, 259 (1979)Google Scholar
  25. 25.
    Raha, S., Bowden, P. B.: Polymer 13, 174 (1972)Google Scholar
  26. 26.
    Rietsch, F., Duckett, R. A., Ward, I. M.: Polymer 20, 1133 (1979)Google Scholar
  27. 27.
    Grime, D., Ward, I. M.: Trans. Faraday Soc. 54, 959 (1958)Google Scholar
  28. 28.
    Cunningham, A. et al.: Polymer 15, 749 (1974)Google Scholar
  29. 29.
    Padibjo, S. R., Ward, I. M.: Polymer 24, 1103 (1983)Google Scholar
  30. 30.
    Boye, Jr. C. A., Overton, J. R.: Bull. Phys. Soc. Ser. 2, 19, 352 (1974)Google Scholar
  31. 31.
    Jakeways, R. et al.: J. Polym. Sci., Polym. Phys. Edn. 13, 799 (1975)Google Scholar
  32. 32.
    Hall, I. H., Pass, M. G.: Polymer 17, 807 (1976)Google Scholar
  33. 33.
    Desborough, I. J., Hall, I. H.: Polymer 18, 825 (1977)Google Scholar
  34. 34.
    Yokouchi, M. et al.: Macromolecules 9, 266 (1976)Google Scholar
  35. 35.
    Stambough, B. D., Koenig, J. L., Lando, J. B.: J. Polym. Sci., Polym. Phys. Edn. 17, 1053 (1979)Google Scholar
  36. 36.
    Davidson, I. S., Manuel, A. J., Ward, I. M.: Polymer 24, 30 (1983)Google Scholar
  37. 37.
    Prevorsek, D. C. et al.: J. Macromol. Sci., B. 8, 127 (1973)Google Scholar
  38. 38.
    Ward, I. M.: Mechanical Properties of Solid Polymers. Second Edition, p. 295. John Wiley & Sons, Ltd., Chichester, (1983)Google Scholar
  39. 39.
    Lewis, E. L. V., Ward, I. M.: J. Mater. Sci. 15, 2354 (1980)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • I. M. Ward
    • 1
  1. 1.Department of Physics University of LeedsLeedsUK

Personalised recommendations