Some mathematical methods for frustration models

  • András Sütõ
II. Spin Glasses and Frustration
Part of the Lecture Notes in Physics book series (LNP, volume 206)


The adoption of the Lee-Yang method (search for the zeroes of the partition function) and the Peierls (or domain wall) argument is presented for the case of Ising frustration models. The first leads to some examples of extremely strong frustration and the second to an explicit demonstration of ordering via entropy barrier.


Partition Function Closed Graph Specific Free Energy Ground State Configuration Entropy Barrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yang C.N. and Lee T.D., Phys. Rev. 87, 404,410 (1952)MATHCrossRefADSMathSciNetGoogle Scholar
  2. 2.
    Asano T., J. Phys. Soc. Japan 29, 350 (1970)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Ruelle D., Phys. Rev. Letters 26, 303 (1971)CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    Lieb E.H. and Sokal A.D., Commun. Math. Phys. 80, 153 (1981)CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    Peierls R., Proc. Cambridge Phil. Soc. 32, 477 (1936)MATHCrossRefGoogle Scholar
  6. 6.
    Griffiths R.B., Phys. Rev. 136, A437; Dobrushin R.L., Sov. Phys. Dokl. 10, 111 (1965) and Theory Probab. Its Appl. 10, 193 (1965)Google Scholar
  7. 7.
    Pirogov S.A. and Sinai Ya. G., Teor. Mat. Fiz. 25, 358 (1975); ibid 26, 61 (1976); Sinai Ya. G., Theory of phase transitions: Rigorous results (Akadémiai Kiadó, Budapest 1982) pp 29–74MathSciNetGoogle Scholar
  8. 8.
    Sütõ A., Helv. Phys. Acta 54, 191, 201 (1981); Z. Phys. B44, 121 (1981)MathSciNetGoogle Scholar
  9. 9.
    Sütõ A., J. Phys. A14, 2733 (1981)ADSGoogle Scholar
  10. 10.
    Wolff W.F. and Zittartz J., Lecture Notes in Physics 192, 252 (Proceedings of the Heidelberg Colloquium on Spin Glasses, 1983)ADSCrossRefGoogle Scholar
  11. 11.
    Titchmarsh E.C., The theory of functions (Oxford University Press, 1975)Google Scholar
  12. 12.
    Longa L. and Oleś A.M., J. Phys. A13, 1031 (1980).ADSGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • András Sütõ
    • 1
  1. 1.Central Research Institute for PhysicsBudapest 114Hungary

Personalised recommendations