Advertisement

Static and dynamic properties of short range Ising spin glasses

  • Wolfgang Kinzel
II. Spin Glasses and Frustration
Part of the Lecture Notes in Physics book series (LNP, volume 206)

Abstract

Let us now draw some conclusions for the two-dimensional Ising model with short range random interactions and a relaxational dynamics:
  1. -

    The model describes experiments qualitatively

     
  2. -

    It has no static transition

     
  3. -

    Nevertheless in the field H, temperature T and observation time t diagram, Fig. 6, there is a rather well defined surface below which spin glass behaviour is observed. This surface is rather singular, since one finds Tf(H=0,t)∼(ℓnt)−1/2 and Tf(H,t)−Tf(0,t) ∼H2/3

     
  4. -

    Below Tf(H,t) the spins freeze into small completely frozen clusters, the rest seems to remain in thermal equilibrium

     
  5. -

    The freezing process can be described by a dynamics of small decoupled clusters

     
  6. -

    The model even reproduces recent experiments which favour a static phase transition

     
  7. -

    Only at T=0 one has a phase transition with scaling laws

     
  8. -

    Also experimental data are not inconsistent with T=0 scaling

     
  9. -

    The low lying metastable states do not have the structure of the mean field states

     

Keywords

Thermal Equilibrium Spin Glass Nonlinear Susceptibility Spin Glass State Spin Glass Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Disordered Systems and Localization, Lecture Notes in Physics, Vol. 149 (Springer 1981)Google Scholar
  2. 2.
    Heidelberg Colloquium on Spin Glasses, Lecture Notes in Physics, Vol. 192 (Springer 1983)Google Scholar
  3. 3.
    K. Binder and W. Kinzel, in Ref.1, p. 124Google Scholar
  4. 4.
    K. Binder and W. Kinzel, in Ref.2, p. 279Google Scholar
  5. 5.
    S.F. Edwards and P.W. Anderson, J. Phys. F5, 965 (1975)CrossRefADSGoogle Scholar
  6. 6.
    D. Sherrington and S. Kirkpatrick, Phys. Rev. Lett. 35, 1792 (1975)CrossRefADSGoogle Scholar
  7. 7.
    G. Parisi, Phys. Rev. Lett. 43, 1754 (1979)CrossRefADSGoogle Scholar
  8. 8.
    see e.g. C. de Dominicis, in Ref.2, Disordered Systems and Localization, Lecture Notes in Physics, Vol. 149 (Springer 1981) p. 103Google Scholar
  9. 9.
    H. Sompolinski and A. Zippelius, Phys. Rev. Lett. 47, 359 (1981)CrossRefADSGoogle Scholar
  10. 10.
    G. Parisi, Phys. Rev. Lett. 50, 1946 (1983); A.P. Young, Phys. Rev. Lett. 51, 1206(1983)CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    A.P. Young, A. Bray and M. Moore, to be publishedGoogle Scholar
  12. 12.
    M. Mezard, G. Parisi, N. Sourlas, G. Toulouse and M. Virasora, to be publishedGoogle Scholar
  13. 13.
    K. Binder and K. Schröder, Phys. Rev. B14, 2142 (1976)ADSGoogle Scholar
  14. 14.
    W. Kinzel, Phys. Rev. B19, 4595 (1979)ADSGoogle Scholar
  15. 15.
    D. Stauffer and K. Binder, Z. Physik B34, 97 (1979)ADSGoogle Scholar
  16. 16.
    A.P. Young, Phys. Rev. Lett. 50, 917 (1983)CrossRefADSGoogle Scholar
  17. 17.
    I. Morgenstern and K. Binder, Phys. Rev. Lett. 43, 1615 (1979); Phys. Rev. B22, 288 (1980)CrossRefADSGoogle Scholar
  18. 18.
    W. Kinzel, Z. Phys. B46, 59 (1982)CrossRefADSGoogle Scholar
  19. 19.
    See e.g. J.A. Mydosh in Ref. 1, Disordered Systems and Localization, Lecture Notes in Physics, Vol. 149 (Springer 1981) p. 87ADSCrossRefGoogle Scholar
  20. 20.
    W. Kinzel, Phys. Rev. B26, 6303 (1982)ADSGoogle Scholar
  21. 21.
    W. Kinzel and K. Binder, Phys. Rev. B29, 1300 (1984)ADSGoogle Scholar
  22. 22.
    K. Binder, Z. Phys. B48, 319 (1982)CrossRefADSGoogle Scholar
  23. 23.
    W. Kinzel and K. Binder, Phys. Rev. Lett. 50, 1509 (1983)CrossRefADSGoogle Scholar
  24. 24.
    K. Binder and A.P. Young, to be publishedGoogle Scholar
  25. 25.
    J.R.L. de Almeida and D.J. Thouless, J. Phys. A11, 983 (1978)ADSGoogle Scholar
  26. 26.
    J. Hamida, C. Paulsen, S.J. Williamson and H. Maletta, to be publishedGoogle Scholar
  27. 27.
    W. Kinzel, unpublishedGoogle Scholar
  28. 28.
    see e.g. D. Sherrington in Ref. 2, Disordered Systems and Localization, Lecture Notes in Physics, Vol. 149 (Springer 1981) p. 125ADSCrossRefGoogle Scholar
  29. 29.
    see e.g. H. Maletta in Ref. 2, Disordered Systems and Localization, Lecture Notes in Physics, Vol. 149 (Springer 1981) p. 90Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Wolfgang Kinzel
    • 1
  1. 1.Institut für Festkörperforschung der KFA JülichJülichGermany

Personalised recommendations