Advertisement

HKK transfornatlons: Some results

  • Werner Dietz
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 205)

Abstract

We simgify considerably the original representation of the HKX transformations by means of determinants. We present some examples to illustrate the action of these transformations. We show the equivalence of HKX and Kramer-Neugebauer transformations. Finally, we sketch the analysis of two balancing Kerr-NUT objects.

Keywords

Angular Momentum Vacuum Solution Gravitational Attraction Flat Space Vacuum Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Chapter I

  1. [1]
    H. Weyl, Ann. Phys. 54, 117 (1917)Google Scholar
  2. [2]
    R.P. Kerr, Phys. Rev. Lett. 11, 237 (1963)Google Scholar
  3. [3]
    F.J. Ernst, Phys. Rev. 167, 1175 (1968)Google Scholar
  4. [4]
    A. Tomimatsu, H. Sato, Phys. Rev. Lett. 29, 1344 (1972) and Prog. Theor. Phys. 50, 95 (1973)Google Scholar
  5. [5]
    G. Neugebauer, Phys. Lett. 75A, 259 (1980)Google Scholar
  6. [5a]
    V.A. Belinsky, V.A. Zakharov, JEPT, 50, 1, (1979)Google Scholar
  7. [ 5b]
    B.K. Harrison, Phys. Rev. D 21, 1965 (1980)Google Scholar
  8. [5c]
    C.M. Cosgrove, J. Phys. A 11, 2405 (1978)Google Scholar
  9. [ 5d]
    I. Hauser, F.J. Ernst, J. Math. Phys. 21, 1126 (1980)Google Scholar
  10. [6]
    W. Kinnersley, J. Math. Phys. 14, 651 (1973)Google Scholar
  11. [ 6a]
    W. Kinnersley, J. Math. Phys. 18, 1529 (1977)Google Scholar
  12. [ 6b]
    W. Kinnersley, D. Chitre, J. Math. Phys. 18, 1538 (1977)Google Scholar
  13. [6c]
    W. Kinnersley, D. Chitre, J. Math. Phys. 19, 1926 (1978)Google Scholar
  14. [ 6d]
    W. Kinnersley, D. Chitre, J. Math. Phys. 19, 2037 (1978)Google Scholar
  15. [ 7]
    C. Hoenselaers, W. Kinnersley and B. Xanthopoulos, J. Math. Phys. 20, 2530 (1979)Google Scholar
  16. [8]
    T. Lewis, Proc. Roy. Soc. Lond. A 136, 176 (1932)Google Scholar
  17. [9]
    D.M. Zipoy, J. Math. Phys. 7, 1137 (1966)Google Scholar
  18. [9a]
    B. Voorhees, Phys. Rev. D2, 2119 (1970)Google Scholar
  19. [10]
    K. Schwarzschild, Sitz. PreuB. Akad. Wiss. 189 (1916)Google Scholar
  20. [11]
    R. Bach, H. Weyl, Math. Z. 13, 134 (1922)Google Scholar
  21. [12]
    J. Chazy, Bull. Soc. Math. France 52, 17 (1924)Google Scholar
  22. [12a]
    H.E.J. Curzon, Proc. London Math. Soc. 23, 477 (1924)Google Scholar
  23. [13]
    J. L. Synge, Relativity: The General Theory, Amsterdam 1971, pp. 314Google Scholar
  24. [13a]
    W. Israel, Phys. Rev. D15, 937 (1977)Google Scholar

Chapter II

  1. [1]
    W. Dietz, Gen. Rel. Grav. 15, 911 (1983)Google Scholar
  2. [2]
    W. Dietz, Gen. Rel. Grav. 16, 249 (1984)Google Scholar
  3. [3]
    C. Cosgrove, J. Math. Phys. 21, 2417 (1980)Google Scholar
  4. [4]
    C. Hoenselaers and W. Dietz, Gen. Rel. Grav. 16, 71 (1984)Google Scholar

Chapter III

  1. [1]
    C. Hoenselaers, W. Kinnersley and B. Xanthopoulos, J. Math. Phys. 20, 2530 (1979)Google Scholar
  2. [2]
    W. Dietz, C. Hoenselaers, Proc. R. Soc. Lond. A 382, 221 (1982)Google Scholar
  3. [3]
    W. Dietz, C. Hoenselaers, Phys. Rev. Lett. 48, 778 (1982)Google Scholar
  4. [4]
    D. Kramer, in this volumeGoogle Scholar
  5. [4a]
    D. Kramer, G. Neugebauer, Phys. Lett. u75A, 259 (1980)Google Scholar
  6. [5]
    M. Yamazaki, in this volumeGoogle Scholar
  7. [5a]
    M. Yamazaki, Prog. Theor. Phys. 68, 503 (1983)Google Scholar
  8. [6]
    K. Oohara, H. Sato, Prog. Theor. Phys. 65, 1891 (1981)Google Scholar
  9. [7]
    W. Dietz, “On Techniques for Generating Solutions and Generated Two Mass Solutions of Einstein's Vacuum Equations”, Habilitationsschrift, Universität Würzburg (1984)Google Scholar
  10. [7a]
    W. Dietz, C. Hoenselaers, in preparationGoogle Scholar
  11. [8]
    W. Kinnersley, D.M. Chitre, J. Math. Phys. 19, 2037 (1978)Google Scholar
  12. [9]
    C. Hoenselaers, “Remarks on the double Kerr solution”, submitted to Prog. Theor. Phys.Google Scholar
  13. [10]
    C. Cosgrove, J. Math. Phys. 21, 2417 (1980)Google Scholar
  14. [11]
    C. Hoenselaers, “Axisymmetric Stationary Vacuum Solutions of Einstein's Equations”, Habilitationsschrift, Universität München (1982)Google Scholar

Chapter IV

  1. [1]
    W. Dietz and C. Hoenselaers, Phys. Rev. Lett. 48, 778 (1982)Google Scholar
  2. [2]
    W. Israel, Phys. Rev. D 15, 937 (1977)Google Scholar
  3. [3]
    W. Dietz, “On Techniques for Generating Solutions and Generated Two Mass Solutions of Einstein's Vacuum Equations”, Habilitationschrift, Universität Würzburg (1984)Google Scholar
  4. [3a]
    W. Dietz, C. Hoenselaers, in preparationGoogle Scholar
  5. [4]
    Landolt-Börnstein, Zahlenwerte und Funktionen aus Naturwissenschaft und Technik, N Neue Serie, Gruppe VI, Band 1, Berlin (1965)Google Scholar
  6. [5]
    H.-H. Voigt, Abriss der Astronomie, Mannheim (1969) *** DIRECT SUPPORT *** A3418162 00003Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Werner Dietz
    • 1
  1. 1.Institut für Astronomie und AstrophysikWürzburgGermany

Personalised recommendations