Advertisement

HKX-transformations an introduction

  • C. Hoenselaers
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 205)

Abstract

We give an introduction into the technique of HKX-transformations for generating new axisymmetric stationary solutions of Einstein's vacuum field equations from old ones. A review of the important definitions and theorems and a scetch of the proofs is given.

Keywords

Unify Field Theory Important Definition Ernst Potential Vacuum Field Equation Ernst Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1).
    W. Kinnersley, J. Math. Phys. 18, 1529 (1977)Google Scholar
  2. 1a).
    W. Kinnersley, D. Chitre, J. Math. Phys. 18, 1538 (1977)Google Scholar
  3. 1b).
    W. Kinnersley, D. Chitre, J. Math. Phys. 19, 1926 (1978)Google Scholar
  4. 1c).
    W. Kinnersley, D. Chitre, J. Math. Phys. 19, 2037 (1978)Google Scholar
  5. 1d).
    W. Kinnersley, J. Math. Phys. 21, 2231 (1980)Google Scholar
  6. 2).
    C. Hoenselaers, W. Kinnersley, B. Xanthopoulos, J. Math. Phys. 20, 2530 (1979)Google Scholar
  7. 3).
    C. Hoenselaers, in: Unified field theories of more than 4 dimensions, including exact solutions. Eds: V. de Sabbata, E. Schmutzer, World Scientific, Singapore (1983)Google Scholar
  8. 4).
    K. Ueno, Publ. RIMS, Kyoto Univ. 19, 59 (1983)Google Scholar
  9. 5).
    Y-S. Wu, M-L. Ge, J. Math. Phys. 24, 1187 (1983)Google Scholar
  10. 6).
    C.B. Morrey, Amer. J. Math. 80, 198 (1958)Google Scholar
  11. 7).
    H.O. Cordes, Nachr. Akad. Wiss. Göttingen 11, 239 (1976)Google Scholar
  12. 8).
    W. Dietz, Gen. Rel. Grav. 15, 911 (1983)Google Scholar
  13. 9).
    I. Hauser, F. Ernst, J. Math. Phys. 22, 1051 (1981)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • C. Hoenselaers
    • 1
  1. 1.Max-Planck-Institut für Physik und AstrophysikInstitut für AstrophysikGarchingGermany

Personalised recommendations