Advertisement

Exact solutions in cosmology

  • M. A. H. MacCallum
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 205)

Keywords

Cosmological Model Gravitational Wave Perfect Fluid Bianchi Type True Vacuum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.A.H. MacCallum (1979). The mathematics of anisotropic spatiallyhomogeneous cosmologies. In Physics of the expanding universe, ed. M. Demianski, Lecture Notes in Physics, vol. 109. Springer-Verlag; Berlin, Heidelberg and New York.Google Scholar
  2. 2.
    M.A.H. MacCallum (1979). Anisotropic and inhomogeneous relativistic cosmologies. In General relativity: an Einstein centenary survey, ed. S.W. Hawking and W. Israel. Cambridge University Press: Cambridge.Google Scholar
  3. 3.
    M. Carmeli, C. Charach and S. Malin (1981). Survey of cosmological models with gravitational, scalar and electromagnetic waves. Phys. Repts. 76, 79.Google Scholar
  4. 4.
    S.W. Hawking and G.F.R. Ellis (1973). The large-scale structure of the universe. Cambridge University Press: Cambridge.Google Scholar
  5. 5.
    F.J. Tipler (1977). On the nature of singularities in general relativity. Phys. Rev. D 15, 942.Google Scholar
  6. 6.
    F.J. Tipler, C.J.S. Clarke and G.F.R. Ellis (1980). Singularities and horizons: a review article. In General Relativity and Gravitation: one hundred years after the birth of Albert Einstein, vol. 2, 97, ed. A. Held. Plenum: New York.Google Scholar
  7. 7.
    R.P. Geroch, Liang B.-C., and R.M. Wald (1983). Singular boundaries of space-time. J. Math. Phys. 23, 432.Google Scholar
  8. 8.
    S.T.C. Siklos (1976). Singularities, invariants and cosmology. Ph. D. thesis, University of Cambridge.Google Scholar
  9. 9.
    S.T.C. Siklos (1978). Occurrence of whimper singularities. Comm. math. phys. 58, 255.Google Scholar
  10. 10.
    S.T.C. Siklos (1981). Nonscalar singularities in spatiallyhomogeneous cosmologies. Gen. Rel. and Grav. 13, 433.Google Scholar
  11. 11.
    C.J.S. Clarke (1974). Singularities in globally hyperbolic spacetimes. Comm. math. phys. 41, 65.Google Scholar
  12. 12.
    C.J.S. Clarke (1976). Space-time singularities. Comm. math. phys. 49, 17.Google Scholar
  13. 13.
    C.J.S. Clarke (1983). Local extensions in singular space-times. Comm. math. phys. 84, 329.Google Scholar
  14. 14.
    W. Press and E.T. Vishniac (1980). Tenacious myths about cosmological perturbations larger than the horizon size. Astrophys. J. 239, 1.Google Scholar
  15. 15.
    J. Bardeen (1980). Gauge-invariant cosmological perturbations. Phys. Rev. D 22, 1882.Google Scholar
  16. 16.
    R. Brandenberger, R. Kahn and W.H. Press (1983). Cosmological perturbations in the early universe. Phys. Rev. D 28, 1809.Google Scholar
  17. 17.
    S.W. Goode (1983). Spatially inhomogeneous cosmologies and their relation with the FRW models. Ph. D. thesis, University of Waterloo.Google Scholar
  18. 18.
    V.A. Belinskii, I.M. Khalatnikov and E.M. Lifshitz (1982). A general solution of the Einstein equations with a time singularity. Adv. Phys. 31, 639.Google Scholar
  19. 19.
    J.D. Barrow and F.J. Tipler (1979). An analysis of the generic singularity studies by Belinskii, Lifshitz and Khalatnikov. Phys. Repts. 56, 371.Google Scholar
  20. 20.
    V.A. Belinskii, E.M. Lifshitz and I.M. Khalatnikov (1980). On the problem of the singularities in the general cosmological solution of the Einstein equations. Phys. Lett. A 77, 214.Google Scholar
  21. 21.
    J. D. Barrow and F.J. Tipler (1980). Generic singularity studies revisited. Phys. Lett. A 82, 441.Google Scholar
  22. 22.
    M.A.H. MacCallum (1982). Relativistic cosmology for astrophysicists. In The origin and evolution of galaxies, ed. V. de Sabbata. World Scientific: Singapore. And in The origin and evolution of galaxies, ed. B.J.T. and J.E. Jones. D. Reidel; Dordrecht (1983).Google Scholar
  23. 23.
    M.P. Ryan, jr., and L.C. Shepley (1975). Homogeneous Relativistic Cosmologies. Princeton University Press: Princeton.Google Scholar
  24. 24.
    D. Kramer, H. Stephani, M.A.H. MacCallum and E. Herlt (1980). Exact solutions of Einstein's field equations. Deutscher Verlag der Wissenschaften: Berlin and Cambridge University Press: Cambridge. Also (1982) Energoisdat: Moscow (in Russian translation, ed. Yu. S. Vladimirov).Google Scholar
  25. 25.
    M.A.H. MacCallum (1978). Anisotropic cosmologies. Rend. Sem. Mat. Univers. Politecn. Torino 36, 27.Google Scholar
  26. 26.
    G.F.R. Ellis (1967). Dynamics of pressure-free matter in general relativity. J. Math. Phys. 8, 1171.Google Scholar
  27. 27.
    J.M. Stewart and G.F.R. Ellis (1968). On solutions of Einstein's equations for a fluid which exhibit local rotational symmetry. J. Math. Phys. 9, 1072.Google Scholar
  28. 28.
    R.T. Jantzen (1983). Spatially homogeneous dynamics: a unified picture. To appear in Advance Series in Astrophysics.Google Scholar
  29. 29.
    R.S. Harness (1982). Spacetimes homogeneous on timelike hypersurfaces. Ph.D. thesis, Queen Mary College, London and J. Phys. A 15, 135.Google Scholar
  30. 30.
    L. Defrise-Carter (1975). Conformal groups and conformally equivalent isometry groups. Comm. math. phys. 40, 273.Google Scholar
  31. 31.
    D.M. Eardley (1974). Self-similar spacetimes: geometry and dynamics. Comm. math. phys. 37, 287.Google Scholar
  32. 32.
    R.H. Gowdy (1974). Vacuum spacetimes with two-parameter spacelike isometry groups and compact invariant hypersurfaces: topologies and boundary conditions. Ann. Phys. (N.Y.) 83, 203.Google Scholar
  33. 33.
    R.T. Jantzen (1980). Soliton solutions of the Einstein equations generated from cosmological solutions with additional symmetry. Nuovo Cim. B 59, 287.Google Scholar
  34. 34.
    P. Szekeres (1975). A class of inhomogeneous cosmological models. Comm. math. phys. 41, 55.Google Scholar
  35. 35.
    D. A. Szafron and J. Wainwright (1977). A class of inhomogeneous perfect fluid cosmologies. J. Math Phys. 18, 1068.Google Scholar
  36. 36.
    D.A. Szafron (1977). Inhomogeneous cosmologies: new exact solutions and their evolution. J. Math. Phys. 18, 1673.Google Scholar
  37. 37.
    W.B. Bonnor, A.H. Sulaiman and N. Tomimura (1977). Szekeres' spacetimes have no Killing vectors. Gen. Rel. and Grav. 8, 549.Google Scholar
  38. 38.
    B.K. Berger, D.M. Eardley and D.W. Olson (1977). Note on the spacetimes of Szekeres. Phys. Rev. D 16, 3068.Google Scholar
  39. 39.
    J. Wainwright (1977). Characterisation of the Szekeres inhomogeneous cosmologies as algebraically special solutions. J. Math. Phys. 18, 672.Google Scholar
  40. 40.
    A. Spero and D.A. Szafron (1978). Spatial conformal flatness in homogeneous and inhomogeneous cosmologies. J. Math. Phys. 19, 1536.Google Scholar
  41. 41.
    C.B. Collins and D.A. Szafron (1979). A new approach to inhomogeneous cosmologies: Intrinsic symmetries I. J. Math. Phys. 20, 2347. II: Conformally flat slices and an invariant characterisation. J. Math. Phys. 20, 2354. III: Conformally flat slices and their analysis. J. Math. Phys. 20, 2362.Google Scholar
  42. 42.
    G.M. Covarrubias (1982). Einstein's quadrupole formula, Szekeres' quasi-spherical spacetimes and Cooperstock's approximation method. Ph. D. thesis, Queen Elizabeth College, London.Google Scholar
  43. 43.
    J. Wainwright (1979). A classification scheme for non-rotating inhomogeneous cosmologies. J. Phys. A 12, 2015.Google Scholar
  44. 44.
    J. Wainwright (1981). Exact spatially inhomogeneous cosmologies. J. Phys. A 14, 1131.Google Scholar
  45. 45.
    A.A. Coley and B.O.J. Tupper (1983). A new look at FRW cosmologies. Gen. Rel. and Grav. 15, 977.Google Scholar
  46. 46.
    A.A. Coley and B.O.J. Tupper (1983). Zero-curvature FriedmanRobertson-Walker models as exact viscous magnetohydrodynamic cosmologies. Astrophys. J. 271, 1.Google Scholar
  47. 47.
    A.A. Coley and B.O.J. Tupper (1983). An exact viscous fluid FRW cosmology. Phys. Lett. A 95, 357.Google Scholar
  48. 48.
    J.A. Wheeler (1962). Geometrodynamics. Academic Press: New York.Google Scholar
  49. 49.
    A. Guth (1981). Inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347.Google Scholar
  50. 50.
    G.W. Gibbons, S.W. Hawking and S.T.C. Siklos (1983). The very early universe. Cambridge University Press: Cambridge.Google Scholar
  51. 51.
    O.I. Bogoyavlenskii (1980). Methods of the qualitative theory of dynamical systems in astrophysics and gas dynamics (in Russian). Nauka: Moscow.Google Scholar
  52. 52.
    J.D. Barrow (1982). Chaotic behaviour in general relativity. Phys. Repts. 85, 1.Google Scholar
  53. 53.
    J.D. Barrow (1984). Chaotic behaviour and the Einstein equations. To appear in: Classical General Relativity, ed. W.B. Bonnor, J.N. Islam and M.A.H. MacCallum. Cambridge University Press: Cambridge.Google Scholar
  54. 54.
    C.B. Collins and S.W. Hawking (1973). Why is the universe isotropic? Astrophys. J. 180, 317.Google Scholar
  55. 55.
    V.N. Lukash (1976). Physical interpretation of homogeneous cosmological models. Nuovo Cim. B 35, 268.Google Scholar
  56. 56.
    A.L. Harvey (1979). Automorphisms of the Bianchi model Lie groups. J. Math. Phys. 20, 251.Google Scholar
  57. 57.
    S.T.C. Siklos (1980). Field equations for spatially-homogeneous space-times. Phys. Lett. A 76, 19.Google Scholar
  58. 58.
    M.A. Melvin and T.R. Michalik (1980). Symmetries and metrics of homogeneous cosmologies. J. Math. Phys. 21, 1938.Google Scholar
  59. 59.
    R.T. Jantzen (1983). Perfect fluid sources for spatially homogeneous cosmologies. Ann. Phys. (N.Y.) 145, 378.Google Scholar
  60. 60.
    R.T. Jantzen (1979). The dynamical degrees of freedom in spatially homogeneous cosmology. Comm. math. phys. 64, 211Google Scholar
  61. 61.
    R.H. Gowdy (1982). Geometrical perturbation theory: actionprinciple surface terms in homogeneous cosmologies. J. Math. Phys. 23, 2151.Google Scholar
  62. 62.
    M.A.H. MacCallum (1971). A class of homogeneous cosmological models III: Asymptotic behaviour. Comm. math. phys. 20, 57.Google Scholar
  63. 63.
    M.P. Ryan, jr. (1971). Qualitative cosmology: diagrammatic solutions for Bianchi type IX universes: I. the symmetric case. Ann. Phys. (N.Y.) 65, 506 and II: the general case, Ann. Phys. (N.Y.) 68, 541.Google Scholar
  64. 64.
    M.P. Ryan, jr. (1972). Hamiltonian cosmology. Springer Lecture Notes in Physics, vol. 13. Springer Verlag: Berlin, Heidelberg and New York.Google Scholar
  65. 65.
    K. Rosquist (1984). Regularised field equations for Bianchi type VI spatially homogeneous cosmology. Class. Quant. Grav. 1, 81.Google Scholar
  66. 66.
    K. Rosquist (1983). Exact rotating and expanding radiation-filled universe. Phys. Lett. A 97, 145.Google Scholar
  67. 67.
    Y. Elskens (1983). Alternative descriptions of the discrete mixmaster universe. Phys. Rev. D 28, 1033.Google Scholar
  68. 68.
    A. Zardecki (1983). Modelling in chaotic relativity. Phys. Rev. D 28, 1235.Google Scholar
  69. 69.
    D. Lorenz (1981). An exact Bianchi V tilted cosmological model with matter and an electromagnetic field. Gen. Rel and Grav. 13, 795.Google Scholar
  70. 70.
    D. Lorenz (1982). Tilted electromagnetic Bianchi type VI cosmological solution. Astrophys. Sp. Sci. 85, 59.Google Scholar
  71. 71.
    D. Lorenz (1983). Exact Bianchi-Kantowski-Sachs solutions of Einstein's field equations. J. Phys. A 16, 575.Google Scholar
  72. 72.
    C.B. Collins and G.F.R. Ellis (1979). Singularities in Bianchi cosmologies. Phys. Repts. 56, 65.Google Scholar
  73. 73.
    R.M. Wald (1983). Asymptotic behaviour of homogeneous cosmological models in the presence of a positive cosmological constant. Phys. Rev. D 28, 211.Google Scholar
  74. 74.
    H. Sirousse-Zia (1982). Fluctuations produced by the cosmological constant in the empty Bianchi type IX universe. Gen. Rel. and Grav. 14, 751.Google Scholar
  75. 75.
    J. Wainwright (1983). A spatially homogeneous cosmological model with plane-wave singularity. Phys. Lett. A 99, 301.Google Scholar
  76. 76.
    S.T.C. Siklos (1981). Some Einstein spaces and their global properties. J. Phys. A 14, 395.Google Scholar
  77. 77.
    J. Wainwright and P.J. Anderson (1983). Isotropic singularities and isotropization in a class of Bianchi type VIh cosmologies. University of Waterloo preprint.Google Scholar
  78. 78.
    S.W. Goode and J. Wainwright (1982). Friedmanlike singularities in Szekeres cosmological models. Mon. Not. R.A.S. 198, 83.Google Scholar
  79. 79.
    J. Wainwright (1983). Power law singularities in orthogonal spatially homogeneous cosmologies. University of Waterloo preprint.Google Scholar
  80. 80.
    M. Bradley and E. Sviestins (1984). Some rotating, time-dependent Bianchi VIII cosmologies with heat flow. Gen. Rel. and Grav. to appear.Google Scholar
  81. 81.
    I. Hauser and F.J. Ernst (1981). On a Geroch conjecture. J. Math. Phys. 22, 1051.Google Scholar
  82. 82.
    J. Wainwright, W.C.W. Ince and B.J. Marshman (1979). Spatially homogeneous and inhomogeneous cosmologies with equation of state p-μ. Gen. Rel. and Grav. 10, 259.Google Scholar
  83. 83.
    P.S. Letelier (1975). Self-gravitating fluids with cylindrical symmetry. J. Math. Phys. 16, 1488.Google Scholar
  84. 84.
    P.S. Letelier (1979). Self-gravitating fluids with cylindrical symmetry II. J. Math. Phys. 20, 2078.Google Scholar
  85. 85.
    J.D. Barrow (1978). Quiescent cosmology. Nature 272, 211.Google Scholar
  86. 86.
    K. Tomita (1978). On inhomogeneous cosmological models containing space-like and time-like singularities alternately. Prog. Theor. Phys. 59, 1150.Google Scholar
  87. 87.
    V.A. Belinskii and V.E. Zakharov (1978). Integration of the Einstein equations by the inverse scattering method and calculation of exact soliton solutions. Z.E.T.F. 75, 1953 (in Russian: translated as Sov. Phys.-J.E.T.P. 48, 985.Google Scholar
  88. 88.
    V.A. Belinskii and M. Francaviglia (1982). Solitonic gravitational waves in Bianchi II cosmologies I: the general framework. Gen. Rel. and Grav. 14, 213.Google Scholar
  89. 89.
    M. Carmeli, C. Charach and A. Feinstein (1983). Inhomogeneous mixmaster universes: some exact solutions. Ann. Phys. (N.Y.) 150, 392.Google Scholar
  90. 90.
    C.M. Cosgrove (1980). Relationships between the group-theoretic and soliton-theoretic techniques for generating stationary axisymmetric gravitational solutions. J. Math. Phys. 21, 2417.Google Scholar
  91. 91.
    C.M. Cosgrove (1982). Relationship between the inverse scattering techniques of Belinskii-Zakharov and Hauser-Ernst in general relativity. J. Math. Phys. 23, 615.Google Scholar
  92. 92.
    Ts.I. Gutszunaev and V.A. Cherniaev (1983). Static axisymmetric gravitational fields. In: Contributed papers of the Tenth International Conference on general relativity and gravitation, ed. B. Bertotti, F. de Felice and A. Pascolini. Padova.Google Scholar
  93. 93.
    J.-L. Hanquin and J. Demaret (1984). Exact solutions for inhomogeneous generalisations of some vacuum Bianchi models. Class. Quant. Grav. 1 (to appear).Google Scholar
  94. 94.
    J. Wainwright and B. Marshman (1979). Some exact cosmological models with gravitational waves. Phys. Lett. A 72, 275.Google Scholar
  95. 95.
    J. Centrella and R.A. Matzner (1979). Plane-symmetric cosmologies. Astrophys. J. 230, 311.Google Scholar
  96. 96.
    P. Letelier and R. Tabensky (1975). Cylindrical self-gravitating fluids with pressure equal to energy density. Nuovo Cim. B 28, 407.Google Scholar
  97. 97.
    V.A. Belinskii (1980). One-soliton gravitational waves. Z.E.T.F. 77, 1239 (in Russian: translation in Sov. Phys.-J.E.T.P. 50, 623).Google Scholar
  98. 98.
    V.A. Belinskii and D. Fargion (1980). Two-soliton waves in anisotropic cosmology. Nuovo Cim. B 59, 143.Google Scholar
  99. 99.
    J. Ibanez and E. Verdaguer (1983). Soliton collision in general relativity. Phys. Rev. Lett. 51, 1313.Google Scholar
  100. 100.
    B.J. Carr and E. Verdaguer (1983). Soliton solutions and cosmological gravitational waves. Phys. Rev. D 28, 2995.Google Scholar
  101. 101.
    P.J. Adams, R.W. Hellings, R.L. Zimmerman, H. Farshoosh, D.I. Levine and S. Zeldich (1982). Inhomogeneous cosmology: gravitational radiation in Bianchi backgrounds. Astrophys. J. 253, 1.Google Scholar
  102. 102.
    B.K. Berger (1974). Quantum graviton creation in a model universe. Ann. Phys. (N.Y.) 83, 203.Google Scholar
  103. 103.
    J. Centrella and R.A. Matzner (1982). Colliding gravitational waves in expanding cosmologies. Phys. Rev. D 25, 930.Google Scholar
  104. 104.
    R.A. Matzner, M. Rosenbaum and M.P. Ryan, jr. (1982). Initial data and wave propagation in one-dimensional inhomogeneous cosmologies. J. Math. Phys. 23, 1984.Google Scholar
  105. 105.
    J. Centrella and J.R. Wilson (1983). Planar numerical cosmology I: the differential equations. Astrophys. J. 273, 428.Google Scholar
  106. 106.
    J. Wainwright (1979). Gravitational wave pulse in a spatially homogeneous universe. Phys. Rev. D 20, 3031.Google Scholar
  107. 107.
    J.-L. Hanquin and J. Demaret (1983). Gowdy Sl⊗S2 and S3 inhomogeneous cosmological models. J. Phys. A 16, L.5.Google Scholar
  108. 108.
    A. Curir and M. Francaviglia (1983). Asymptotic behaviour of solitonic solutions in Bianchi type II spacetimes. In: Contributed papers of the tenth international conference on general relativity and gravitation, ed. B. Bertotti, F. de Felice and A. Pascolini. Padova.Google Scholar
  109. 109.
    R.A. Isaacson (1968). Gravitational radiation in the limit of high frequency I. The linear approximation and geometrical optics. Phys. Rev. 186, 1263. II. Nonlinear terms and the effective stress tensor. Phys. Rev. 186, 1272.Google Scholar
  110. 110.
    J. Wainwright and S.W. Goode (1980). Some exact inhomogeneous cosmologies with equation of state p = γμ. Phys. Rev. D 22, 1906.Google Scholar
  111. 111.
    D. Kramer (1984). A new inhomogeneous cosmological model in general relativity. Class. Quant. Grav. 1 (to appear).Google Scholar
  112. 112.
    K. Bronnikov and M.A. Kovalchuk (1983). Some exact models for nonspherical collapse I. Gen. Rel. and Grav. 15, 809.Google Scholar
  113. 113.
    K. Bronnikov and M.A. Kovalchuk (1984). Some exact models for nonspherical collapse III. Gen. Rel. and Grav. 16, 15.Google Scholar
  114. 114.
    I. Maeda, M. Sasaki and H. Sato (1983). Void in the closed universe. Prog. Theor. Phys. 69, 89.Google Scholar
  115. 115.
    M.A. Hausman, D.W. Olson and B.D. Roth (1983). The evolution of voids in the expanding universe. Astrophys. J. 270, 351.Google Scholar
  116. 116.
    D. Lorenz (1983). Spatially self-similar cosmological models of Bianchi type II. Astrophys. Sp. Sci. 93, 419.Google Scholar
  117. 117.
    D. Lorenz (1983). Exact spatially self-similar cosmological models of Bianchi type fV. Astrophys. Sp. Sci. 96, 351.Google Scholar
  118. 118.
    J. Demaret and M. Henneaux (1983). New solutions to EinsteinMaxwell equations of cosmological interest. Phys. Lett A 99, 217.Google Scholar
  119. 119.
    C.B.G. McIntosh (1978). Self-similar cosmologies with equation of state p = μ. Phys. Lett. A 69, 1.Google Scholar
  120. 120.
    R.N. Henriksen and P.S. Wesson (1978). Self-similar space-times I: three solutions. Astrophys. Sp. Sci. 53, 429.Google Scholar
  121. 121.
    P.S. Wesson (1975). Relativistic hierarchical cosmology III: Comparison with observational data. Astrophys. Sp. Sci. 32, 315.Google Scholar
  122. 122.
    R.N. Henriksen and P.S. Wesson (1978). Self-similar space-times II: Perturbation scheme. Astrophys. Sp. Sci. 53, 445.Google Scholar
  123. 123.
    Wu Z.-C. (1981). Self-similar cosmological models. Gen. Rel. and Grav. 13, 625 and J. China Univ. Sci. Tech. 11(2), 25 and 11(3), 20.Google Scholar
  124. 124.
    K. Tomita (1981). Partially self-similar solutions in general relativity. Prog. Theor. Phys. 66, 2025.Google Scholar
  125. 125.
    S.W. Goode and J. Wainwright (1982). Singularities and evolution of the Szekeres cosmological models. Phys. Rev. D 26, 3315.Google Scholar
  126. 126.
    M.D. Pollock and N. Caderni (1980). On the introduction of isotropic blackbody radiation into the inhomogeneous cosmological models of Szekeres. Mon. Not. R.A.S. 190, 509.Google Scholar
  127. 127.
    A. Krasinski (1983). On the global geometry of the Stephani universe. Gen. Rel and Grav. 15, 673.Google Scholar
  128. 128.
    C.W. Misner (1969). Relativistic fluids in cosmology. In: Colloques Internationaux de C.N.R.S., vol. 220. Paris.Google Scholar
  129. 129.
    G.F.R. Ellis, R. Maartens and S.D. Nel (1980). Observational cosmology I: Ideal cosmographic observations. University of Capetown preprint.Google Scholar
  130. 130.
    G. Dautcourt (1983). The cosmological problem as initial value problem on the observer's past light cone: geometry. J. Phys. A. 16, 3507.Google Scholar
  131. 131.
    G. Dautcouxt (1983). The cosmological problem as initial value problem on the observer's past light cone: observations. Astr. Nachr. 304, 153.Google Scholar
  132. 132.
    G.F.R. Ellis, R. Maartens and S.D. Nel (1978). The expansion of the universe: Mon. Not. R.A.S. 184, 439.Google Scholar
  133. 133.
    R. Sussman (1984). Conformal structure of a Schwarzschild black hole immersed in a Friedman universe. Gen. Rel. and Grav. (to appear).Google Scholar
  134. 134.
    R. Kantowski (1969). Corrections in the luminosity-redshift relations of the homogeneous Friedman models. Astrophys. J. 155, 59.Google Scholar
  135. 135.
    C.C. Dyer (1976). The gravitational perturbation of the cosmic background radiation by density concentrations. Mon. Not. R.A.S. 175, 429.Google Scholar
  136. 136.
    R.P.A.C. Newman and G.C. McVittie (1982). A point particle model universe. Gen. Rel. and Grav. 14, 591.Google Scholar
  137. 137.
    R.P.A.C. Newman (1979). Singular perturbations of the empty Robertson-Walker cosmologies. Ph. D. thesis, University of Kent.Google Scholar
  138. 138.
    W.B. Bonnox (1972) A non-uniform relativistic cosmological model. Mon. Not. R.A.S. 159, 261.Google Scholar
  139. 139.
    S. Mavrides (1976). Anomalous Hubble expansion and inhomogeneous cosmological models. Mon. Not. R.A.S. 177, 709.Google Scholar
  140. 140.
    R. Tolman (1934). Effect of inhomogeneity on cosmological models. Proc. Nat. Acad. Sci. (Wash.) 20, 169.Google Scholar
  141. 141.
    C.B. Collins and S.W. Hawking (1972). The rotation and distortion of the universe. Mon. Not. R.A.S. 162, 307.Google Scholar
  142. 142.
    I.D. Novikov (1968). An expected anisotropy of the cosmological radioradiation in homogeneous anisotropic models. Astr. Zh. 45, 538 (in Russian: translation in Sov. Astr.-A.J. 12, 427).Google Scholar
  143. 143.
    J.D. Barrow, R. Juszkiewicz and D.H. Sonoda (1983). The structure of the cosmic microwave background. University of Sussex preprint.Google Scholar
  144. 144.
    R.A. Matzner and B.W. Tolman (1982). Cosmological spatial curvature probed by microwave polarisation. University of Texas preprint.Google Scholar
  145. 145.
    J.D. Barrow (1976). Light elements and the isotropy of the universe. Mon. Not. R.A.S. 175, 359.Google Scholar
  146. 146.
    J.D. Barrow (1977). The synthesis of light elements in turbulent cosmologies. Mon. Not. R.A.S. 178, 625.Google Scholar
  147. 147.
    D.W. Olson (1977). Helium production and limits on the anisotropy of the universe. Astrophys. J. 219, 777.Google Scholar
  148. 148.
    D.W. Olson and J. Silk (1978). Inhomogeneity in cosmological element formation. Astrophys. J. 226, 50.Google Scholar
  149. 149.
    T. Rothman and R.A. Matzner (1982). Effects of anisotropy and dissipation on the primordial light isotope abundances. Phys. Rev. Lett. 48, 1565.Google Scholar
  150. 150.
    R. Juszkiewicz, S. Bajtlik and K. Gorski (1983). The helium abundance and the isotropy of the universe. Mon. Not. R.A.S. 204, 63P.Google Scholar
  151. 151.
    D.R. Matravers and D.L. Vogel (1984). Helium formation in a Bianchi type V cosmological model with tilt. Class. Quant. Grav. 1 (to appear).Google Scholar
  152. 152.
    B.J. Carr and S.W. Hawking (1974). Black holes in the early universe. Mon. Not. R.A.S 168, 399.Google Scholar
  153. 153.
    J.D. Barrow and B.J. Carr (1978). Primordial black hole formation in an anisotropic universe. Mon. Not. R.A.S. 182, 537.Google Scholar
  154. 154.
    E.T. Vishniac (1983). Entropy generation and limits on the anisotropy of the universe. Mon. Not. R.A.S. 205, 675.Google Scholar
  155. 155.
    B.D. Miller (1979). Repulsive and attractive timelike singularities in vacuum cosmologies. J. Math. Phys. 20, 1356.Google Scholar
  156. 156.
    D.A. Konkowski and T.M. Helliwell (1982). “Taub-NUT-like” cosmologies. Phys. Lett. A 91, 149. *** DIRECT SUPPORT *** A3418162 00007Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • M. A. H. MacCallum
    • 1
  1. 1.School of Mathematical SciencesQueen Mary CollegeLondonUK

Personalised recommendations