Advertisement

Explicit and hidden symmetries of dimensionally reduced (super-) gravity theories

  • P. Breitenlohner
  • D. Maison
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 205)

Keywords

Field Equation Dimensional Reduction Gauge Transformation Symmetric Space Maximal Compact Subgroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T. Kałuza, Sitzungsber. Preuss. Akad. Wiss. 1921, 966.Google Scholar
  2. [2]
    E. Schmutzer, lecture at the present meeting.Google Scholar
  3. [3]
    E. Cremmer and B. Julia, Nucl. Phys. B159 (1979) 141.Google Scholar
  4. [4]
    J. Ehlers, Dissertation, 1957, HamburgGoogle Scholar
  5. [4a]
    R. Geroch, J. Math. Phys. 12 (1971) 918Google Scholar
  6. [4b]
    D. Maison, Gen. Rel. Grav. 10 (1979) 717.Google Scholar
  7. [5]
    R. Geroch, J. Math. Phys. 13 (1972) 394.Google Scholar
  8. [6]
    W. Kinnersley, J. Math. Phys. 18 (1977) 1529.Google Scholar
  9. [7]
    B. Julia, in “Superspace and Supergravity”, eds. S. Hawking and M. Roček, Cambridge, 1981Google Scholar
  10. [8]
    B.K. Harrison, Phys. Rev. Lett. 41 (1978) 1197Google Scholar
  11. [8a]
    G. Neugebauer, J. Phys. A12 (1979) L67.Google Scholar
  12. [9]
    W. Kinnersley and D.M. Chitre, J. Math. Phys. 18 (1977) 1538. vGoogle Scholar
  13. [10]
    V.A. Belinskiį and V.E. Zakharov, Zh. Eksp. Teor. Fiz. 75 (1978) 1955.Google Scholar
  14. [11]
    I. Hauser and F.J. Ernst, Phys. Rev. D20 (1979) 362Google Scholar
  15. [11a]
    K. Ueno and Y. Nakamura, Phys. Lett. 117B (1982) 208.Google Scholar
  16. [12]
    P. Breitenlohner and D. Maison, to appear.Google Scholar
  17. [13]
    J. Eells Jr. and J.H. Sampson, Am. J. Math. 86 (1964) 109.Google Scholar
  18. [14]
    H. Eichenherr and M. Forger, Nucl. Phys. B155 (1979) 381.Google Scholar
  19. [15]
    S. Helgason, Differential Geometry and Symmetric Spaces (Academic Press, New York, 1962)Google Scholar
  20. [15A]
    S. Kobayashi and H. Nomizu, Foundations of Differential Geometry (Interscience, New York, 1963).Google Scholar
  21. [16]
    R. Gilmore, Lie Groups, Lie Algebras and their Applications (Wiley, New York, 1974).Google Scholar
  22. [17]
    T. Lewis, Proc. Roy. Soc. A136 (1932) 176.Google Scholar
  23. [18]
    W. Kinnersley, in Proc. of GR7, eds. G. Shavif and J. Rosen (Wiley, New York, 1975).Google Scholar
  24. [19]
    D. Kramer and G. Neugebauer, Ann. Phys. (Leipzig) 24 (1969) 62.Google Scholar
  25. [20]
    E. Cremmer, B. Julia and J. Scherk, Phys. Lett. 76B (1978) 409.Google Scholar
  26. [21]
    J. Scherk and J.H. Schwarz, Phys. Lett. 57B (1975) 463Google Scholar
  27. [21a]
    E. Cremmer and J. Scherk, Nucl. Phys. B103 (1976) 399.Google Scholar
  28. [22]
    M.K. Gaillard and B. Zumino, Nucl. Phys. B193 (1981) 221.Google Scholar
  29. [23]
    S.D. Majumdar, Phys. Rev. 72 (1947) 390Google Scholar
  30. [23a]
    A. Papapetrou, Proc. Roy. Irish, Acad. A51 (1947) 191. 2705 0617 V 3Google Scholar
  31. [24]
    D. Kramer and G. Neugebauer, Commun. Math. Phys. 10 (1968) 132.Google Scholar
  32. [25]
    C.M. Cosgrove, J. Math. Phys. 21 (1980) 2417.Google Scholar
  33. [26]
    R.A. Matzner and C.W. Misner, Phys. Rev. 154 (1967) 1229.Google Scholar
  34. [27]
    R. Moody, Bull. Am. Math. Soc. 73 (1967) 217Google Scholar
  35. [27a]
    V. Kac, Math. USSR Izwestiya Ser. Math. 32 (1968) 1271Google Scholar
  36. [27b]
    J. Lipowski and R. Wilson, Commun, Math. Phys. 62 (1978) 43.Google Scholar
  37. [28]
    D. Maison, J. Math. Phys. 20 (1979) 871Google Scholar
  38. [28a]
    D. Maison and J. Burzlaff, J. Math. Phys. 20 (1979) 1352.Google Scholar
  39. [29]
    V.E. Zakharov and A.B. Shabat, Funct. Anal. Appl. 13 (1979) 116.Google Scholar
  40. [30]
    R.S. Ward, Gen. Rel. Grav. 15 (1983) 105.Google Scholar
  41. [31]
    M. Adler and P. van Moerbeke, Adv. Math. 38 (1980) 267Google Scholar
  42. [31a.
    M. Adler, Invent. Math. 50 (1979) 219.Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • P. Breitenlohner
    • 1
  • D. Maison
    • 1
  1. 1.Max-Planck-Institut für Physik und AstrophysikWerner-Heisenberg-Institut für PhysikMunichGermany

Personalised recommendations