Inverse scattering, differential geometry Einstein-Maxwell solitons and one Soliton Bäcklund transformations

  • Metin Gürses
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 205)


A survey of the method inverse scattering transform is given and a differential geometric interpretation of the inverse scattering equations is presented. Einstein-Maxwell field equations for space-times admitting nonnull commuting two Killing vector fields are integrated by giving the 2N-soliton construction. One soliton constructions of the gravitational field and of the self-dual Yang-Mills field equations are shown to be equivalent to the recently found Bäcklund transformations.


Field Equation Symmetric Space Configuration Space Inverse Scattering Kill Vector Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


First six Books and Review Articles are not quoted in the text.

  1. Barut, A.O., (ed.) Nonlinear Equations in Physics and Mathematics, Reidel, Dordrecht, 1978.Google Scholar
  2. Jeffrey, A. and Kawahara, T. Asymptotic Methods in Nonlinear Wave Theory, Pitman Advanced Publishing Program, Boston (1982).Google Scholar
  3. Lamb, G.L., Jr. Elements of Soliton Theory, Wiley, New York, 1980.Google Scholar
  4. Miura, R.M. (ed.) Bäcklund Transformations, The Inverse Scattering Method, Solitons and their Applications, Lecture Notes in Mathematics, 515, Springer, Berlin, 1976.Google Scholar
  5. Scott, A.C., Chu, F.Y.F. and McLaughlin, D.W., Proc. IEEE, 61, 1443 (1973).Google Scholar
  6. Witham, A.C., Linear and Nonlinear Waves, Wiley, New York, (1974).Google Scholar
  7. Ablowitz, M.J., Kaub, J.D., Newell, A.C., and Segur, H., Phys. Rev. Lett. 30, 1262 (1973a); ibid 31, 125 (1973b).Google Scholar
  8. Ablowitz, M.J., Kaub, J.D., Newell, A.C., and Segur,H., Stud. Appl. Math. 53, 249 (1974).Google Scholar
  9. Ablowitz, M.J., Stud. Appl. Math. 58, 17 (1978).Google Scholar
  10. Aleksejev, G.A., Abstracts GR9, 1, (1980); Sov. Phys. Dokl. 26, 158 (1981).Google Scholar
  11. Belavin, A.A., Zakharov, V.E., Sov. Phys. JETP Lett. 25, 567 (1977).Google Scholar
  12. Belinskii, V.A., and Zakharov, V.E., Sov. Phys, JETP 48, 935 (1978); ibid. 50, 1 (1979)Google Scholar
  13. Bullough, R.K., and Caudrey, P.S. (ed.) Solitons, Topics in Current Physics, Springer, 1980.Google Scholar
  14. Calogero, F., “Spectral Transform and Solitons: Tools to solve and investigate nonlinear evolution equations”, Notes of Lectures given at the Institute for Theoretical Physics in Groningen, April–June 1979.Google Scholar
  15. Calogero, F., “Nonlinear Evolution Equations Solvable by the Inverse Spectral Transform”, Invited Lecture presented at the International Conference on the Mathematical Problems in Theoretical Physics, Rome University, June 6–13, 1977.Google Scholar
  16. Calogero, F., and Degasperis, A., in Solitons, Ed. by Bullough, R.K, and Caudrey, P.S., Topics in Current Physics, Springer Verlag (1980).Google Scholar
  17. Chinea, F.J., Phys. Rev. Lett. 50, 221 (1983); Phys. Rev. D24, 1053 (1981).Google Scholar
  18. Cosgrove, C.M., J. Math. Phys. 21, 2417 (1980).Google Scholar
  19. Crampin, M., Pirani, F.A.E., Robinson, D.C., Lett. Math. Phys. 2, 15 (1977).Google Scholar
  20. Eals, J., and Sampson, J.H., Am. J. Math. 36, 109 (1964).Google Scholar
  21. Eichenherr, H., Phys. Lett. 115B, 386 (1983).Google Scholar
  22. Eris, A., Gürses, M., and Karasu, A., To be published in the J. Math. Phys. (1984); Abstracts, GR10, (1983); in Group Theoretical Methods in Phys. Lecture Notes in Physics, Ed. by M. Serdaroĝlu and E. Inönü Springer, 1982.Google Scholar
  23. Eris, A., J. Math. Phys., 18, 824 (1977).Google Scholar
  24. Eris, A., and Nutku, Y., J. Math. Phys. 16, 1431 (1974).Google Scholar
  25. Ernst, F.J., Phys. Rev. 168, 1776 (1968)Google Scholar
  26. Focas, S., and Ablowitz, M.J., “Lectures on the inverse scattering transform for multidimensional (2+1) problems”, Talk presented by A.S. Focas at the School and Workshop on Nonlinear Phenomena, QAXTEPEC, Mexico 1982.Google Scholar
  27. Gardner, C.S., Greene, J.M., Kruskal, M.D., and Miura, R.M., Phys. Rev. Lett. 19, 1095 (1967).Google Scholar
  28. Gürses, M., Phys. Rev. Lett. 51, 1810 (1983).Google Scholar
  29. Gürses, M., and Nutku, Y., J. Math. Phys.22, 1393 (1981).Google Scholar
  30. Gürses, M., and Xanthopoulos, B.C., Phys. Rev. D26, 1912 (1982).Google Scholar
  31. Hauser, I., and Ernst, F.J., Phys. Rev. D20, 1783 (1979); J. Math. Phys. 21, 1418 (1980).Google Scholar
  32. Hoenselaers, C., Kinnersley, W., Xanthopoulos, B.C., J. Math. Phys. 20, 2530 (1979); Phys. Rev. Lett. 42, 481 (1979).Google Scholar
  33. Hoenselaers, C., in “Unified Field Theories of More Than 4 Dimensions, Including Exact Solutions”, Ed. by V.D. Sabbata and E. Schmutzer, World Scientific, Singapore (1983).Google Scholar
  34. Hirota, R., in Solitons, Ed. by R.K. Bullough, and P.S. Caudrey, Topics in Current Physics, Springer 1980.Google Scholar
  35. Harrison, B.K., Phys. Rev. Lett., 41, 1197 (1978).Google Scholar
  36. Kinnersley, W., J. Math. Phys.18, 1529 (1977).Google Scholar
  37. Kramer, D., J. Phys. A15, 220 (1982).Google Scholar
  38. Kramer, D., and Neugebauer, G., J. Phys. A14, L33 (1981).Google Scholar
  39. Kramer, D., Stephani, H., MacCallum, M., and Herlt, E., Exact Solutions of Einstein Field Equations, Cambridge Monographs on Math. Phys. 6, Ed. by E. Schmutzer (1980).Google Scholar
  40. Kobayshi, S., and Nomizu, K., Foundation of Differential Geometry, Vol. 2, Interscience, New York, 1969.Google Scholar
  41. Lax, P.D., Commun. Pure Appl. Math. 21, 407 (1968).Google Scholar
  42. Maison, D., Phys. Rev. Lett. 41, 521 (1978).Google Scholar
  43. Manakov, S.V., Physica 3D, 420 (1981).Google Scholar
  44. Mandkov, S.V., Zakharov, V.E., Lett. Math. Phys. 5, 247 (1981).Google Scholar
  45. Matzner, R., and Misner, C.W., Phys. Rev. 154, 1229 (1967).Google Scholar
  46. Mazur, P., J. Phys. A15, 3173 (1982); Acta Phys. Pol. B14, 219 (1983)Google Scholar
  47. Mikhailov, A., and Yarimchuk, “Cylindrically Symmetric Solutions of the Nonlinear Chiral Field Model (σ-model)” Cern Preprint, TH-3150-fern (1981).Google Scholar
  48. Miura, R.M., J. Math. Phys. 9, 1202 (1968).Google Scholar
  49. Misner, C.W., Phys. Rev. D18, 4510 (1978).Google Scholar
  50. Neugebauer, G., J. Phys. A12, L67 (1979).Google Scholar
  51. Neugebauer, G., and Kramer, D., Annalen Physik 24, 62 (1969); J. Phys. A16, 1927 (1983).Google Scholar
  52. Nutku, Y., Ann. Inst. H. Poincaré, A21, 175 (1974).Google Scholar
  53. Ogielski, A.T., Prasad, M.K., Sinha, A., Chau, L.L.W., Phys. Lett. 91B, 887 (1980).Google Scholar
  54. Orfanidis, S.J., Phys. Rev. D21, 1513 (1980).Google Scholar
  55. Prasad, M.K., Sinha, A., and Chau, L.L.W., Phys. Rev. Lett. 43, 750 (1979).Google Scholar
  56. Sasaki, R., Phys. Lett. 71A, 390 (1979); ibid 72A, 77 (1979).Google Scholar
  57. Ueno, K., and Nakamura, Y., Phys. Lett. 109B, 273 (1982); ibid 117B, 208 (1982).Google Scholar
  58. Ueno, K., RIMS, 19, 59 (1983).Google Scholar
  59. Witten, L., Phys Rev. D19, 718 (1979).Google Scholar
  60. Wadati, M., J. Phys. Soc. Japan, 32, 1681 (1972).Google Scholar
  61. Wadati, M., Kamijo, T., Prog. Theor. Phys. 52, 397 (1974).Google Scholar
  62. Wadati, M., in Solitons, Ed. by R.K. Bullough and P.S. Caudrey, Springer 1980.Google Scholar
  63. Wu, Y.S., and Ge, L.M., J. Math. Phys., 24, 1187 (1983).Google Scholar
  64. Wu, Y.S., Phys. Lett. 96A, 179 (1983); Commun. Math. Phys. 90, 461 (1983).Google Scholar
  65. Yamazaki, M., Phys. Rev. Lett. 50, 1027 (1983).Google Scholar
  66. Zakharov, V.E., and Shabat, A.B., Sov. Phys. JETP, 34, 62 (1972).Google Scholar
  67. Zakharov, V.E., and Shabat, A.B., Funct. Anal. Appl. 13, 166 (1979).Google Scholar
  68. Zakharov, V.E., and Manakov, S.V., Sov. Sci. Rev. Phys. Rev. 1, 133 (1979).Google Scholar
  69. Zakharov, V.E., Manakov, S.V., Novikov, S.P., and Pitagevsky, L.P., Theory of Soliton. The method of inverse scattering problem, 1980.Google Scholar
  70. Zakharov, V.E., in Solitons, Topics in Current Physics, Ed. by. R.K. Bullough and P.S. Caudrey, Springer-Verlag (1980).Google Scholar
  71. Zakharov, V.E., and Mikhailov, A.V., Sov. Phys. JETP, 47, 1017 (1978).Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Metin Gürses
    • 1
  1. 1.Department of Applied MathematicsMarmara Research InstituteGebzeTurkey

Personalised recommendations