Advertisement

Bäcklund transformations in general relativity

  • D. Kramer
  • G. Neugebauer
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 205)

Keywords

Field Equation Linear Problem Seed Solution Vacuum Field Commutation Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aleksejev, G.A. (1980), Pisma Zh. Eksp. Teor. Fiz. 32, 301; GR9 Abstracts, Vol. 1,1Google Scholar
  2. Bäklund, A. (1882), Math. Ann. 19, 387Google Scholar
  3. Bianchi, L. (1910), Vorlesungen über Differentialgeometrie, Leipzig, BerlinGoogle Scholar
  4. Belinski, V.A. and Zakharov, V.E. (1978), Zh. Eksp. Teor. Fiz. 75, 1953Google Scholar
  5. Cosgrove, C.M. (1979), Proceedings of the Second Marcel Grossmann Meeting on Recent Developments in General Relativity, TriesteGoogle Scholar
  6. Cosgrove, C.M. (1980), J. Math. Phys. 21, 2417Google Scholar
  7. Cosgrove, C.M. (1981), J. Math. Phys. 22, 2624Google Scholar
  8. Dietz W. and Hoenselaers, C. (1982), Proc. Roy. Soc. Lond. A 382, 221Google Scholar
  9. Ernst, F.J. (1968), Phys. Rev. 167, 1175; 168, 1415Google Scholar
  10. Harrison, B.K. (1978), Phys. Rev. Lett. 41, 1197Google Scholar
  11. Harrison, B.K. (1980) Phys. Rev. D 21, 1695Google Scholar
  12. Hoenselaers, C. (1980), J. Math. Phys. 21, 2241Google Scholar
  13. Hoenselaers, C., Kinnersley, W., and Xanthopoulos, B.C. (1979), Phys. Rev. Lett. 42, 481; J. Math. Phys. 20, 2530Google Scholar
  14. Kihara, M. and Tomimatsu, A. (1982), Progr. Theor. Phys. 67, 349Google Scholar
  15. Kihara, M., Oohara, K., Sato, H., and Tomimatsu, A. (1983) GR10 Contributed Papers, Vol. 1, 272Google Scholar
  16. Kinnersley, W. and Chitre, D. (1977-78), J. Math. Phys. 18, 1538; 19, 1926, 2037Google Scholar
  17. Kramer, D. (1980), GR9 Abstracts, Vol. 1, 42Google Scholar
  18. Kramer, D. (1982), J. Phys. A 15, 2201Google Scholar
  19. Kramer, D. and Neugebauer, G. (1968), Comm. Math. Phys. 10, 132Google Scholar
  20. Kramer, D. and Neugebauer, G. (1980), Phys. Letters A 75, 259Google Scholar
  21. Kramer, D. and Neugebauer, G. (1981), J. Phys. A 14, L 333Google Scholar
  22. Maison, D. (1979), J. Math. Phys. 20, 871Google Scholar
  23. Nakamura, Y. (1979), Math. Japon. 24, 469Google Scholar
  24. Neugebauer, G. (1979), J. Phys. A 12, L67Google Scholar
  25. Neugebauer, G. (1980), J. Phys. 175, 1737; L19Google Scholar
  26. Neugebauer, G. and Kramer, D. (1983), J. Phys. A 16, 1927Google Scholar
  27. Neugebauer, G. and Meinel, R. (1984), Phys. Lett. A (to appear)Google Scholar
  28. Oohara, K. and Sato, H. (1981), Progr. Theor. Phys. 65, 1891Google Scholar
  29. Tomimatsu, A. (1983), Progr. Theor. Phys. 70, 385Google Scholar
  30. Tomimatsu, A. and Sato, H. (1973), Progr. Theor. Phys. 50, 95Google Scholar
  31. Tomimatsu, A. and Kihara, M. (1982), Progr. Theor. Phys. 67 1406Google Scholar
  32. Veselov, A.P. (1982), Preprint, L.D. Landau Institute for Theoretical Physics, MoscowGoogle Scholar
  33. Wahlquist, H. and Estabrook, F. (1975), J. Math. Phys. 16, 1Google Scholar
  34. Yamazaki, M. (1983), Phys. Rev. Lett. 50, 1027; Progr. Theor.Phys. 69, 503Google Scholar
  35. Zakharov, V.E., Manakov, S.V., Novikov, S.P., and Pitajewski, L.P. (1980), The theory of solitons: the method of the inverse problem (in Russian), Nauka, MoscowGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • D. Kramer
    • 1
  • G. Neugebauer
    • 1
  1. 1.FSU JenaSektion PhysikJenaGDR

Personalised recommendations