Using information systems to solve reoursive domain equations effectively

  • K. G. Larsen
  • G. Winskel
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 173)


Information System Partial Order Mation System Continuous Operation Closed Family 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A]
    Aczel, P., A note on Scott's theory of domains. Unpublished note, Math. Dept., Univ. of Manchester, (1983).Google Scholar
  2. [B]
    Berry, G., Modeles Completement Adequats et Stables des λ-calculus typés. These de Doctorat dÉtat, Université Paris VII, (1979).Google Scholar
  3. [BC]
    Berry, G. and Curien, P.L., Sequential algorithms on concrete data structures. Report of Ecole Nationale Superieure des Mines de Paris, Centre de Mathematiques Appliquées, Sophia Antipolis, (1981).Google Scholar
  4. [C]
    Cutland, N.J., Computability, an introduction to recursive function theory. Cambridge University Press, (1980).Google Scholar
  5. [CDL]
    Coppo, M., Dezani, M. and Longo, G., Applicative Informative Systems. Universita Degli Studi di Pisa Dipartimento di Informatica, (1983).Google Scholar
  6. [Cu]
    Curien, P-L., Algorithmes sequentiels et extensionnalité. Rapport LITP 82-67 Universite Paris VII, (1982).Google Scholar
  7. [Grä]
    Grätzer, G., Universal Algebra. Van Nostrand University series in Higher Mathematics, (1968).Google Scholar
  8. [KP]
    Kahn, G. and Plotkin, G., Domaines Concrètes. Rapport IRIA Laboria No. 336, (1978).Google Scholar
  9. [Mac]
    MacLane, S., Categories for the working mathematician. Springer-Verlag Graduate Texts in Math., (1971).Google Scholar
  10. [Mc]
    McCarty, C., Information Systems, Continuity and Realizability. Notices of the AMS, August issue, (1983).Google Scholar
  11. [NPW]
    Nielsen, M., Plotkin, G. and Winskel, G., Petri nets, event structures and domains. Theor. Comp. Sc., (1981).Google Scholar
  12. [P]
    Plotkin, G.D., The category of complete partial orders: a tool for making meanings. Lecture notes, Pisa Summer School, (1978).Google Scholar
  13. [P1]
    Plotkin, G.D., A powerdomain construction. SIAM Journal on Computing, vol.5, no.3, p.452–487, (1976).Google Scholar
  14. [S]
    Scott, D.S., Domains for Denotational Semantics. ICALP 1982.Google Scholar
  15. [S1]
    Scott, D.S., Lectures on a mathematical theory of computation. Oxford University Computing Laboratory Technical Monograph PRG-19, (1981).Google Scholar
  16. [Sm]
    Effectively given domains. Theoretical Computer Science, vol.5, pp.257–274 (1977).Google Scholar
  17. [Sm1]
    Smyth, M., The largest cartesian-closed category of domains. Theor. Comp. Sc. (1983).Google Scholar
  18. [St]
    Stoy, J., Denotational semantics: The Scott-Strachey approach to programming language theory. MIT Press, (1977).Google Scholar
  19. [W]
    Winskel, G., Event structure semantics of CCS and related languages. Report of Comp. Sc. Dept., Aarhus University, My Munkegade, 8000 Aarhus C, Denmark, and extended abstract in proc. ICALP 82 in Springer LNCS (1982).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • K. G. Larsen
    • 1
  • G. Winskel
    • 2
  1. 1.Dept. of Computer ScienceUniversity of EdinburghEdinburghG.B.
  2. 2.Computer LaboratoryUniversity of CambridgeCambridgeG.B.

Personalised recommendations