F-semantics for intersection type discipline

  • M. Dezani-Ciancaglini
  • I. Margaria
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 173)


Aim of this paper is to investigate the soundness and completeness for the F-semantics (F-soundness and F-completeness) of some modifications of the intersection type discipline for terms of the (untyped) λ-calculus.

As pointed out by Scott, the key of a λ-model is the set F of the elements representing functions. The F-semantics of types takes into account that the intuitive meaning of “ δ → τ ” is “a function with domain δ and range τ ” and interprets δ → τ as a subset of F.

The type theories which induce F-complete type assignments are characterized. It results that a type assignment is F-complete iff the following are derived rules for it: {ie279-1}


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. /B/.
    Barendregt H., The Lambda Calculus, its Syntax and Semantics, (North-Holland, Amsterdam, 1981).Google Scholar
  2. /BCD/.
    Barendregt H., Coppo M., Dezani-Ciancaglini M., A Filter Lambda Model and the Completeness of Type Assignment, J. Symbolic Logic 48 (1983) 931–940.Google Scholar
  3. /BY/.
    Ben-Yelles C.B., Type Assignment in the Lambda-Calculus: Syntax and Semantics, Doctoral Thesis, University College of Swansea, 1979.Google Scholar
  4. /BM/.
    Bruce K., Meyer A., The Semantics of Second Order Polymorphic Lambda Calculus, in this volume.Google Scholar
  5. /C1/.
    Coppo M., An Extended Polymorphic Type System for Applicative Languages, in: P. Dembinski, ed., Mathematical Foundations of Computer Science 1980, 9th Symposium, LNCS 88, (Springer-Verlag, Berlin, 1980) pp. 194–204.Google Scholar
  6. /C2/.
    Coppo M., On the Semantics of Polymorphism, Acta Informatica, 20 (1983) 159–170.Google Scholar
  7. /C3/.
    Coppo M., Completeness of Type Assignment in Continuous Lambda Models, Theor. Comput. Sci. (to appear).Google Scholar
  8. /CD1/.
    Coppo M., Dezani-Ciancaglini M., A New Type Assignment for λ-terms, Archiv für Math. Logik und Grundlagenforschung 19 (1979) 139–156.Google Scholar
  9. /CD2/.
    Coppo M., Dezani-Ciancaglini M., An Extension of the Basic Functionality Theory for the λ-Calculus, Notre Dame J. of Formal Logic 21-4 (1980) 685–693.Google Scholar
  10. /CDHL/.
    Coppo M., Dezani-Ciancaglini M., Honsell F., Longo G., Extended Type Structures and Filter Lambda Models, in: G. Lolli et al., eds. Logic Colloquium '82, (North-Holland, Amsterdam, 1983) (to appear).Google Scholar
  11. /CDV1/.
    Coppo M., Dezani-Ciancaglini M., Venneri B., Functional Characters of Solvable Terms, Z. Math. Logik Grundlag. Math. 27 (1981) 45–58.Google Scholar
  12. /CDV2/.
    Coppo M., Dezani-Ciancaglini M., Venneri B., Principal Type Schemes and λ-calculus Semantics in: R.Hindley and J.P.Seldin, eds., To H.B.Curry, Essay in Combinatory Logic, Lambda Calculus and Formalism, (Academic Press, 1980) pp. 595–560.Google Scholar
  13. /CDZ/.
    Coppo M., Dezani-Ciancaglini M., Zacchi M., Type Theories, Normal Forms and D — Lambda Models, Internal Report, Computer Science Department, Turin University, 1983.Google Scholar
  14. /CG/.
    Coppo M., Giovannetti E., Completeness Results for a Polymorphic Type System, in: G. Ausiello, ed., CAAP 83, LNCS, 159 (Springer-Verlag, Berlin 1983) pp.179–190.Google Scholar
  15. /CF/.
    Curry H.B., Feys R., Combinatory Logic I, (North Holland, Amsterdam, 1958).Google Scholar
  16. /CHS/.
    Curry H.B., Hindley R., Seldin J.P., Combinatory Logic II, (North Holland, Amsterdam, 1972).Google Scholar
  17. /DM/.
    Dezani-Ciancaglini M., Margaria I., A Characterization of F-complete Polymorphic Type Assignments, Internal Report, Computer Science Department, Turin University 1983.Google Scholar
  18. /FLO/.
    Fortune S., Leivant D., O'Donnel M., The Expressiveness of Simple and Second Order Type Structures, Journal of ACM 30 (1983) 151–185.Google Scholar
  19. /H1/.
    Hindley R., The Principal Type Scheme of an Object in Combinatory Logic, Trans. Amer. Math. Soc. 146 (1969) 29–60.Google Scholar
  20. /H2/.
    Hindley R., The Completeness Theorem for Typing λ-terms, Theor. Comput. Sci. 22 (1) (1983) 1–17.Google Scholar
  21. /H3/.
    Hindley R., Curry's Type-Rules are Complete with respect to F-semantics too, Theor. Comput. Sci. 22 (1) (1983) 127–133.Google Scholar
  22. /H4/.
    Hindley R., The Simple Semantics for Coppo-Dezani-Sallé Type Assignment, in: M. Dezani-Ciancaglini and U. Montanari, eds., International Symposium on Programming, LNCS, 137, (Springer-Verlag, Berlin 1981) pp. 212–226.Google Scholar
  23. /H5/.
    Hindley R., Private Communication, (1980).Google Scholar
  24. /HL/.
    Hindley R., Longo G., Lambda Calculus Models and Extensionality, Zeitschr. Math. Logik 26 (1980) 289–310.Google Scholar
  25. /L/.
    Leivant D., Polymorphic Type Inference, Proc. 10th ACM Symposium on Principles of Programming Languages, Austin Texas (1983), 88–98.Google Scholar
  26. /LO/.
    Longo G., Set-Theoretical Model of λ-calculus: Theories, Expansions, Isomorphism, Annals of Pure and Applied Logic 24(2) (1983) 153–188.Google Scholar
  27. /M/.
    Milner R., Fully Abstract Models of Typed λ-calculus, Theor. Comput. Sci. 4 (1977) 1–22.Google Scholar
  28. /MC/.
    McCracken N., An Investigation of a Programming Language with a Polymorphic Type Structure, Ph. D. Thesis, Syracuse University, 1979.Google Scholar
  29. /MS/.
    Mac Queen D.B., Sethy R., A Semantic Model of Types for Applicative Languages, ACM Symposium of LISP and Functional Programming, (1983), pp. 243–252.Google Scholar
  30. /R1/.
    Reynolds J.C., Towards a Theory of Type Structure in: B. Robinet, ed., Programming Symposium, LNCS 19 (Springer-Verlag, Berlin, 1974) pp. 408–425.Google Scholar
  31. /R2/.
    Reynolds J.C., Types, Abstraction and Parametric Polymorphism, in R.F.A. Mason, ed., Proceedings IFIP 83 (North-Holland, Amsterdam, 1983) pp. 513–529.Google Scholar
  32. /S1/.
    Scott D.S., Open Problems n.II, 4 in C. Böhm, ed., λ-calculus and Computer Science Theory, LNCS 37, (Springer-Verlag, Berlin, 1975) p.368.Google Scholar
  33. /S2/.
    Scott D.S., Data Types as Lattices, SIAM J. Comput. 5 (1976) 522–587.Google Scholar
  34. /S3/.
    Scott D.S., Lambda Calculus: some Models, some Philosophy, in: I. Barwise et al., eds., The Kleene Symposium, Studies in Logic, (North-Holland, Amsterdam, 1980) pp. 223–266.Google Scholar
  35. /S4/.
    Scott D.S., Letter to Albert Meyer (1980).Google Scholar
  36. /S5.
    Scott D.S., Domains for Denotational Semantics in: M. Nielsen and E. Schmidt, eds. Automata, Language and Programming, LNCS 140 (Springer-Verlag, Berlin, 1982) pp. 577–610.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • M. Dezani-Ciancaglini
    • 1
  • I. Margaria
    • 1
  1. 1.Dipartimento di InformaticaTorinoItalie

Personalised recommendations