Cartesian closed categories of enumerations for effective type structures

  • G. Longo
  • E. Moggi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 173)


Finite Type High Type Closure Property Partial Object Acceptable Pairing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barendregt, H. & Longo, G. (1982) "Recursion Theoretic operators and morphisms of numbered sets" Fundamenta Matematicae CXIX.Google Scholar
  2. Bernardi, C., Sorbi, A. (1983) "Classifying positive equivalence relations" J. Symb. Logic, vol. 48,3, 529–539.Google Scholar
  3. Ershov, Yu. L. (1973) "The theory of A-spaces" Algebra and Logic, vol. 12,4, 209–232.Google Scholar
  4. Ershov, Yu. L. (1973/5) "Theorie der Numerierungen I–II", Zeit. Math. Logik vol. 19/21, 289–388/473–584.Google Scholar
  5. Ershov, Yu. L. (1977) "Model C of partial continuous functionals" Logic Colloquium 76 (Gandy, Hyland eds.) North Holland.Google Scholar
  6. Giannini, P., Longo, G. (1983) "Effectively given domains and lambda-calculus semantics" Info. Contr. (to appear).Google Scholar
  7. Kleene, S.C. (1959) "Countable functionals" In H. Heyting (ed.) Constructivity in Mathematics, North-Holland, 81–100.Google Scholar
  8. Kreisel, G. (1959) "Interpretation of Analysis by means of functionals of finite type" ibidem.Google Scholar
  9. Lambek, J. (1980) "From λ-calculus to Cartesian Closed Categories", In R. Hindley, J. Seldin (eds.) To H.B. Curry: essays in Combinatory Logic, lambda calculus and Formalisms Academic Press.Google Scholar
  10. Longo, G. (1982) "Hereditary partial functionals in any finite type (Preliminary note)". Forsch. Inst. Math. E.T.H. Zürich.Google Scholar
  11. Longo, G. (1983) "Set theoretical models of λ-calculus: theories, expansions, isomorphisms" Ann. Pure Applied Logic (formerly: Ann. Math. Logic) 24, 153–188.Google Scholar
  12. Longo, G. (1984) "Continuous structures and analytic methods in Computer Science" In B. Courcelle (ed.), Proceedings of CAAP, Cambridge University Press.Google Scholar
  13. Longo, G., Moggi, E. (1983) "The hereditary partial functionals and recursion theory in higher types" J. Symb. Logic (to appear).Google Scholar
  14. Longo, G., Moggi, E. (1983b) "Gödel-numberings, principal morphisms, combinatory algebras" Nota Sci. D.I., Pisa.Google Scholar
  15. Myhill, J., Shepherdson, J. (1955) "Effective operations on partial recursive functions" Zeit. Math. Logik Grund. Math. vol. 1, 310–317.Google Scholar
  16. Normann, D. (1980) Recursion on the countable functionals, LNM 811 Springer-Verlag, Berlin.Google Scholar
  17. Rogers, H. (1967) "Theory of recursive functions and effective computability" Mc Graw-Hill.Google Scholar
  18. Scott, D.S. (1972) "Continuous lattices" In F. Lawvere (ed.) Toposes, Algebraic Geometry and Logic, LNM 274, Springer-Verlag.Google Scholar
  19. Scott, D.S. (1980) "Relating theories of the λ-Calculus" Same volume as Lambek (1980).Google Scholar
  20. Scott, D.S. (1982) "Some ordered sets in Computer Science" In I. Rival (ed.) Ordered sets, Reidel.Google Scholar
  21. Visser, A. (1980) "Numerations lambda-calculus and arithmetic" Same volume as Lambek (1980).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • G. Longo
    • 1
  • E. Moggi
    • 1
  1. 1.Dipartimento di InformaticaUNIVERSITA DI PISAPisaItalie

Personalised recommendations