Advertisement

Languages and inverse semigroups

  • S. W. Margolis
  • J. E. Pin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 172)

Keywords

Inverse Semigroup Semidirect Product Finite Semigroup Inverse Monoid Prefix Code 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. Berstel, Transductions and Context-free languages. Teubner (1979).Google Scholar
  2. [2]
    A.H. Clifford and G.B. Preston, The algebraic theory of semigroups, Math. Surveys 7, Amer. Math. Soc., Providence, Vol. 1 (1961), Vol 2 (1967).Google Scholar
  3. [3]
    S. Eilenberg, Automata, Languages and Machines, Academic Press, Vol. B (1976)Google Scholar
  4. [4]
    T.E. Hall, Biprefix codes, inverse semigroups and syntactic monoids of injective automata. To appear.Google Scholar
  5. [5]
    M. Keenan and G. Lallement, On certain codes admitting inverse semigroups as syntactic monoids, Semigroup Forum 8, (1974), 312–331.Google Scholar
  6. [6]
    S.W. Margolis, On the syntactic transformation semigroup of a language generated by a finite biprefix code, Theoretical Computer Science 21, (1982), 225–230.Google Scholar
  7. [7]
    W.D. Munn, Free inverse semigroups, Proc. London Math Soc. 3, 29 (1974), 385–404.Google Scholar
  8. [8]
    J.P. Pécuchet, Automates boustrophédons, semigroupe de Birget et monoide inversif libre, to appear.Google Scholar
  9. [9]
    G. Lallement, Semigroups and Combinatorial applications, Wiley, New York, (1979)Google Scholar
  10. [10]
    J.E. Pin, Arbres et hiérarchies de concaténation, 10th ICALP, LNCS 154, (1983), 617–628.Google Scholar
  11. [11]
    J.E. Pin, On varieties of rational languages and variable length codes, J. Pure and Applied Algebra 23, (1982), 169–196.Google Scholar
  12. [12]
    J.E. Pin, Variétés de langages formels. Masson (1984).Google Scholar
  13. [13]
    J.F. Perrot, Codes de Brandt, in Théorie des codes, actes de la 7ème Ecole de Printemps d'Informatique Théorique, édités par D. Perrin, (1979), 177–183.Google Scholar
  14. [14]
    Ch. Reutenauer, Une topologie du monoide libre, Semigroup Forum 18, (1979), 33–49.Google Scholar
  15. [15]
    H.E. Scheiblich, Free inverse semigroups, Proc. Amer. Math. Soc. 38, (1973), 1–7.Google Scholar
  16. [16]
    J.C. Birget et J. Rhodes, Group theory via global semigroup theory, to appear.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • S. W. Margolis
    • 1
  • J. E. Pin
    • 2
  1. 1.Computer ScienceBurlingtonUSA
  2. 2.Université Paris VI et CNRSParis Cedex 05

Personalised recommendations