Advertisement

On probabilistic tape complexity and fast circuits for matrix inversion problems

Extended abstract
  • Hermann Jung
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 172)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    R.Aleliunes, R.M.Karp, R.J.Lipton, L.Lovasz, Random walks, universal traversal sequences and the complexity of maze problems. 20th Annual Symposium on Foundations of Computer Science, 1979, 218–223Google Scholar
  2. (2).
    A. Borodin, On relating time and space to size and depth. SIAM J. Computing 6 (1977), 733–744Google Scholar
  3. (3).
    A.Borodin, S.Cook, N.Pippenger, Parallel computation for wellendowed rings and space-bounded probabilistic machines. TR#162/83, Dept. of Comp. Sci., University of Toronto, 1983Google Scholar
  4. (4).
    A. Borodin, J. von zur Gathen, J.E. Hopcroft, Fast parallel matrix and god computations. Information and Control 52, 3 (1982), 241–256Google Scholar
  5. (5).
    L. Csanky, Fast parallel matrix inversion algorithms. SIAM J. Computing 5 (1976), 618–623Google Scholar
  6. (6).
    R.V. Freivals, Probabilistic two-way machines. 10th Symposium on Mathematical Foundations of Computer Science, 1981, LNCS 118, 33–45Google Scholar
  7. (7).
    J. Gill, Computational complexity of probabilistic Turing machines. SIAM J. Computing 6 (1977), 675–695Google Scholar
  8. (8).
    J.H. Hopcroft, J.D. Ullman, Formal languages and their relation to automata. Addison-Wesley, Reading MA, 1969Google Scholar
  9. (9).
    H.Jung, Relationships between probabilistic and deterministic tape complexity. 10th Symposium on Mathematical Foundations of Computer Science, 1981, LNCS 118, 339–346Google Scholar
  10. (10).
    B.Monien, I.H.Sudborough, On elimating nondeterminism from Turing machines which use less than logarithm worktape space. 6th Coll. on Automata, Languages and Programming, 1979, LNCS 71, 431–445Google Scholar
  11. (11).
    J.H. Reif, Logarithmic depth circuits for algebraic functions. TR-35-82, Harvard Un., Aiken Comp. Lab., Cambridge MA, 1982Google Scholar
  12. (12).
    W.L. Ruzzo, On uniform circuit complexity. Journal of Computer and System Sciences 22 (1981), 365–383Google Scholar
  13. (13).
    W.L.Ruzzo, J.Simon, M.Tompa, Space-bounded hierarchies and probabilistic computations. 14th Annual ACM Symposium on Theory of Computing, 1982Google Scholar
  14. (14).
    J.Simon, On the difference between one and many. 4th Coll. on Automata, Languages and Programming, 1977, LNCS 52, 480–491Google Scholar
  15. (15).
    J.Simon, Space-bounded probabilistic Turing machine complexity classes are closed under complement. 13th Annual ACM Symposium on Theory of Computing, 1981, 158–167Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Hermann Jung
    • 1
  1. 1.Sektion MathematikHumboldt-Universität zu BerlinBerlin

Personalised recommendations