Some results about finite and infinite behaviours of a pushdown automaton

  • Danièle Girault-Beauquier
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 172)


We are interested in infinitary languages recognized by a pushdown automaton. We, then, give theorems of characterization of such closed, central, normal or perfect languages (considering a number of hypothesis of continuity in computations of the automaton, for last three classes). Besides, it is proved that, given the same hypothesis, the largest central (respectively normal, perfect, language included in an algebraic infinitary language, remains algebraic.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    A. Arnold and M. Nivat, Comportements de processus, Colloque AFCET, Les Mathématiques de l'Informatique, Paris (1982), p. 35–68.Google Scholar
  2. (2).
    R. Cohen and A. Gold, Theory of ω-languages, Jour. Comp. Syst. Sci. Vol. 15 (1977), p. 169–184.Google Scholar
  3. (3).
    S. Eilenberg, Automata, languages and machines, Vol. A, Academic Press (1974).Google Scholar
  4. (4).
    M.A. Harrison, Introduction to formal language theory, Addison Wesley (1969).Google Scholar
  5. (5).
    R. McNaughton, Testing and generating infinite sequences by a finite automaton, Inf. and Control, Vol. 9 (1966), p. 521–530.Google Scholar
  6. (6).
    M. Nivat, Behaviours of synchronized systems of processes, Cours de D.E.A. 1981–82, L.I.T.P., Paris VII.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Danièle Girault-Beauquier
    • 1
  1. 1.Université Paris VII UER de MathématiquesPARIS CEDEX 05FRANCE

Personalised recommendations