Advertisement

On the argument complexity of multiply transitive Boolean functions

  • U. Hedtstück
Section VI: Complexity Of Boolean Functions
Part of the Lecture Notes in Computer Science book series (LNCS, volume 171)

Abstract

What we have done is just excluding some kinds of groups for being the stabilizer of a nonexhaustive Boolean function. The next step would be to investigate, if in the remaining set of groups there exists a group, which yields a counterexample. If there is no such group, then 2-transitivity of a Boolean function P with P(0) ≠ P (1) would imply the exhaustiveness of P.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R. D. Carmichael, Groups of finite order, Boston, Ginn&Co, 1937.Google Scholar
  2. [2]
    N. Illies, A counterexample to the generalized Aanderaa-Rosenberg conjecture, Inform. Proc. Lett. 7(1978), no. 3, 154–155.Google Scholar
  3. [3]
    C. Jordan, Sur la limite de transitivite des groupes non alternes, Bull. Soc. Math. France 1 (1873), 40–71.Google Scholar
  4. [4]
    A. L. Rosenberg, On the time required to recognize properties of graphs: A problem, SIGACT News 5(1973), 15–16.Google Scholar
  5. [5]
    R. L. Rivest, J. Vuillemin, On recognizing graph properties from adjacency matrices, Theor. Comp. Sci. 3(1976), 371–384.Google Scholar
  6. [6]
    H. Wielandt, Finite permutation groups, New York — London, Academic Press, 1964.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • U. Hedtstück
    • 1
  1. 1.Institut für InformatikUniversität StuttgartStuttgart 1

Personalised recommendations