Second order spectra

  • Bruno Scarpellini
Section V: Spektralproblem
Part of the Lecture Notes in Computer Science book series (LNCS, volume 171)


Computation Tree Predicate Symbol Computation Path Predicate Variable Order Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asser, G.: Das Representantenproblem im Prädikatenkalkül erster Stufe mit Identität. Zeitschrift für math. Logik u. Grundl. d. Math., 1 (1955) 252–263.Google Scholar
  2. 2.
    Bennet, J.: On spectra. Doctoral Dissertation, Princton Univ., Princeton, 1962.Google Scholar
  3. 3.
    Chandra, A. and Stockmeyer, L.: Alternation. 17th. IEEE — Focs (1976) 98–108.Google Scholar
  4. 4.
    Christen, C.A.: Spektren und Klassen elemtarer Funktionen. Dissertation 5330, ETH Zürich, 1974.Google Scholar
  5. 5.
    Christen, C.A.: Spektralproblem und Komplexitätstheorie. Lecture Notes in Computer Science 43 (1976) 102–126.Google Scholar
  6. 6.
    Eglot, C.: Decision problems of finite automa design and related arithmetics. Trans AMS 98 (1961) 21–51, 103 (1962).Google Scholar
  7. 7.
    Fagin, R.: Generalized first — order spectra and polynomial time recognizable sets. SIAM — AMS Proc. 7 (1974) 43–73.Google Scholar
  8. 8.
    Jones, N.D. and Selman, A.L.: Turing machines and the spectra of first order formulas. J. Symbolic Logic 39 (1974) 139–150.Google Scholar
  9. 9.
    Kozen, D.: On parallelism in Turing machines. 17th. IEEE — Focs (1976) 89–97.Google Scholar
  10. 10.
    Mostowski, A.: Concerning a problem of H. Scholz. Zeitschrift f. math. Logik u. Grundl. d. Math. 2 (1956) 210–214.Google Scholar
  11. 11.
    Rödding, D. und Schwichtenberg, H.: Bemerkungen zum Spektralproblem. Zeitschrift f. math. Logik u. Grundl. d. Math. 18 (1972) 1–12.Google Scholar
  12. 12.
    Scarpellini, B.: Complete second order spectra. To appear in Zeitschrift f. math. Logik u. Grundl. d. Math.Google Scholar
  13. 13.
    Scholz, H.: Ein ungelöstes Problem in der symbolischen Logik. J. Symbolic Logic 17 (1952) 160.Google Scholar
  14. 14.
    Stockmeyer, L.: The polynomial — time hierarchy. Theor. Comp. Sci. 3 (1977) 1–22.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Bruno Scarpellini
    • 1
  1. 1.University of BaselSwitzerland

Personalised recommendations