Advertisement

Reductions for the satisfiability with a simple interpretation of the predicate variable

  • Michael Deutsch
Section IV: Decision Problems
Part of the Lecture Notes in Computer Science book series (LNCS, volume 171)

Keywords

Natural Number Finite Subset Atomic Formula Predicate Logic Conjunctive Normal Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [1]
    Aanderaa, S.O.: On the decision problem for formulas in which all disjunctions are binary. Proc. of the Second Scand. Log. Symp. (1971), pp.1–18.Google Scholar
  2. [2]
    Aanderaa, S.O., Börger, E., Gurevich, Yu.: Prefix classes of Krom formulae with identity. Archiv math. Logik 22 (1982), pp.43–49.Google Scholar
  3. [3]
    Aanderaa, S.O., Lewis, H.: Prefix classes of Krom formulas. Journal of Symbolic Logic 38 (1973), pp.628–642.Google Scholar
  4. [4]
    Börger, E.: Reduktionstypen in Krom-und Hornformeln. Diss. Münster 1971.Google Scholar
  5. [5]
    Börger, E.: Eine entscheidbare Klasse von Kromformeln. Zeitschrift f. Math. Logik u. Grundl. d. M. 19 (1973), pp.117–120.Google Scholar
  6. [6]
    Börger, E.: Decision problems in predicate logic. Bericht Nr. 153/1983 der Abteilung Informatik der Universität Dortmund.Google Scholar
  7. [7]
    Deutsch, M.: Zur Reduktionstheorie des Entscheidungsproblems. Zeitschr. f. Math. Logik u. Grundlagen d. Math. 27 (1981), pp. 113–117.Google Scholar
  8. [8]
    Deutsch, M.: Zur gödelisierungsfreien Darstellung der rekursiven und primitiv-rekursiven Funktionen und rekursiv aufzählbaren Prädikate über Quotiententermmengen. Zeitschr.f. Math. Logik u. Grundlagen d. Math. 26 (1980), pp. 1–32.Google Scholar
  9. [9]
    Deutsch, M.: Eine Verschärfung eines Satzes von Kostyrko zur Reduktionstheorie. To appear in Zeitschr. f. Math. Logik u. Grundlagen d. Math.Google Scholar
  10. [10]
    Goldfarb, W.D.: On the Gödel class with identity. The Journal of Symbolic Logic 46 (1981), pp. 354–364.Google Scholar
  11. [11]
    Goldfarb, W.D., Gurevich, Yu., Shelah, S.: On the Gödel class with identity. To appear.Google Scholar
  12. [12]
    Gurevich, Yu.: Ob effektivnom raspoznavanii vipolnimostik formul UIP. Algebra i Logika 5 (1966), pp. 25–55.Google Scholar
  13. [13]
    Gurevich, Yu.: Formulas with one ∀. In Memory of A.I. Maltsev, 1973 (in Russian).Google Scholar
  14. [14]
    Gurevich, Yu.: The decision problem for standard classes. The Journal of Symbolic Logic 41 (1976), pp. 460–464.Google Scholar
  15. [15]
    Kostyrko, V.F.: Klass cvedeniya ∀εn∀. Algebra i Logika 3 (1964), pp. 45–65.Google Scholar
  16. [16]
    Kostyrko, V.F.: Klass cvedeniya ∀ε∀. Kibernetika 2 (1966), pp. 15–19.Google Scholar
  17. [17]
    Krom, M.R.: The decision problem for a class of first-order formulas in which all disjunctions are binary. Zeitschr. f. Math. Logik u. Grundlagen d. Math. 13 (1967), pp. 15–20.Google Scholar
  18. [18]
    Krom, M.R.: The decision problem for formulas in prenex conjunctive normal form with binary disjunctions. The Journal of Symbolic Logic 35 (1970), pp.210–216.Google Scholar
  19. [19]
    Lewis, H.R.: Krom formulas with one dyadic predicate letter. The Journal of Symbolic Logic 41 (1976), pp.341–362.Google Scholar
  20. [20]
    Lewis, H.R.: Unsolvable classes of quantificational formulas. Reading (Mass.) 1979.Google Scholar
  21. [21]
    Deutsch, M.: Zum Reduktionstyp ∀3(0,1). To appear in Zeitschrift f. Math. Logik u. Grundlagen d. Mathematik.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Michael Deutsch
    • 1
  1. 1.Universität BremenGermany

Personalised recommendations