Advertisement

On the solvability of the extended ∀∃ ∧ ∃∀⋆ — Ackermann class with identity

  • Stål Aanderaa
Section IV: Decision Problems
Part of the Lecture Notes in Computer Science book series (LNCS, volume 171)

Abstract

Dreben and Goldfarb define the class 5.7 to be the class of all schemata of the form
$$\forall y\exists xPy \wedge \forall y_l \forall y_2 \cdots \forall y_n G$$
where G is quantifier-free and contains, apart from the dyadic predicate letter P, only monadic predicate letters. Dreben and Goldfarb prove the docility of the class 5.7, but the solvability of this class is left open (see Dreben and Goldfarb(1979) p. 136 and p.264). We shall give an outline of a proof of the solvability of the class 5.7. In fact, we shall give an outline of a proof of the solvability of an extension of this class.

Keywords

Decision Problem Periodic Structure Predicate Symbol Periodic Model Identity Sign 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackermann, Wilhelm 1928 "Über die Erfüllbarkeit gewisser Zählaüsdrucke," Math. Ann. V. 100 pp. 638–649Google Scholar
  2. Ackermann, Wilhelm 1936. "Beiträge zum Entscheidungsproblem der mathematischen Logik". Math. Ann. V. 112 pp. 414–432.Google Scholar
  3. Drake, Frank R, 1974 Set theory. An introduction to large cardinals. North-Holland. Amsterdam.Google Scholar
  4. Denton, John 1963 Applications of the Herbrand theorem. Ph.D. thesis, Harvard University, Cambridge, Mass.Google Scholar
  5. Dreben, Burten and John Denton 1963 "Three solvable cases," Notices Amer.Math.Soc. V.10 p 590.Google Scholar
  6. Dreben, Burton and Goldfarb, Warren D., 1979. The decision problem. Solvable classes of quantificational formulas. Addison-Wesley Reading, MassachusettsGoogle Scholar
  7. Kostyrko, V.F. 1962 "On a case of the decision problem in the restricted predicate calculus". Uspekhi.Mat.Nauk V.17 (106) p.213.Google Scholar
  8. Ramsey, F.P., 1930 "On a problem of formal logic", Proc. London Math. Soc (Ser.2) V.30 pp. 264–286.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Stål Aanderaa

There are no affiliations available

Personalised recommendations