Universal Turing machines (UTM) and Jones-Matiyasevich-masking

  • G. Hasenjaeger
Section III: Automata And Machines
Part of the Lecture Notes in Computer Science book series (LNCS, volume 171)


Boolean Algebra Jump Condition Disjunctive Normal Form Cyclic Order Binomial Coefficient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. DAVIS (1973) Hilbert's tenth problem is unsolvable. Amer. Math. Monthly 80 (1973) 233–269.Google Scholar
  2. SINGMASTER (1974) Notes on binomial coefficients I-III. J. London Math. Soc. 8 No 3, (1974) 545–560.Google Scholar
  3. MATIYASEVICH (1975) A new proof of the theorem on exponential diophantine representations of enumerable sets. J. Soviet Math. 14 (1980), 1475–1486; Result announced 1975.Google Scholar
  4. GREGUŠOVÁ/KOREC (1979) Small universal Minsky machines, Mathem. Foundations of Computer Science 1979. Lecture Notes in Computer Science 74. Berlin-Heidelberg-New York, 1979.Google Scholar
  5. JONES/MATIYASEVICH (1980) Direct translation of register machines into exponential diophantine equations, Preprint 1980, available in the Report on the 1st GTI-workshop Lutz Priese (Ed.) Paderborn March 1983.Google Scholar
  6. JONES/MATIYASEVICH (1981) Exponential diophantine representation of recursively enumerable sets, Proceedings of the Herbrand colloquium '81. Amsterdam-New York-Oxford 1982.Google Scholar
  7. JONES (1982) Universal diophantine equation, J. Symbolic Logic 47 (1982) 549–571.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • G. Hasenjaeger
    • 1
  1. 1.Seminar für Logik und Grundlagenforschung der Universität BonnGermany

Personalised recommendations