P-mitotic sets

  • Klaus Ambos-Spies
Section I: Complexity
Part of the Lecture Notes in Computer Science book series (LNCS, volume 171)


Polynomial Time Recursion Theory Deterministic Polynomial Time Polynomial Time Computable Function Proper Hierarchy 
These keywords were added by machine and not by the authors.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AS.
    K. Ambos-Spies, Sublattices of the polynomial time degrees, in preparation.Google Scholar
  2. BGS.
    T. Baker, J. Gill and R. Solovay, Relativizations of the P=?NP question, SIAM J. Comput. 4 (1975) 431–442.Google Scholar
  3. BH.
    J. Hartmanis and L. Berman, On isomorphisms and density of NP and other complete sets, SIAM J. Comput. 6 (1977) 305–322.Google Scholar
  4. HM.
    S.Homer and W.Maass, Oracle dependent properties of the lattice of NP sets, to appear.Google Scholar
  5. Lac.
    A.H. Lachlan, The priority method. I, Zeitschrift für math. Logik u. Grundlagen d. Mathematik 13 (1967) 1–10.Google Scholar
  6. Lad1.
    R.E. Ladner, Mitotic recursively enumerable sets, J. Symbolic Logic 38 (1973) 199–211.Google Scholar
  7. Lad2.
    R.E. Ladner, A completely mitotic nonrecursive r.e. degree, Trans. Amer. Math. Soc. 184 (1973) 479–507.Google Scholar
  8. Lad3.
    R.E. Ladner, On the structure of polynomial time reducibility, J. Assoc. Comp. Machinery 22 (1975) 155–171.Google Scholar
  9. LLR.
    L.H. Landweber, R.J. Lipton and E.L. Robertson, On the structure of sets in NP and other complexity classes, Theor. Comp. Science 15 (1981) 181–200.Google Scholar
  10. LLS.
    R.E. Ladner, N.A. Lynch and A.L. Selman, A comparision of polynomial time reducibilities, Theor. Comp. Science 1 (1975) 103–123.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  • Klaus Ambos-Spies
    • 1
  1. 1.Lehrstuhl für Informatik IIUniversität DortmundDortmund 50

Personalised recommendations