Recent Progress

  • F. H. Busse
  • J. P. Gollub
  • S. A. Maslowe
  • H. L. Swinney
Part of the Topics in Applied Physics book series (TAP, volume 45)


The brief discussion and bibliography contained in this chapter clearly show the the subject of instabilities and the transition to turbulence continues to evolve rapidly.


Couette Flow Strange Attractor Vortex Flow Radius Ratio Amplitude Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 10.1
    T.Tatsumi (ed.): Turbulence and Chaotic Phenomena in Fluids. Proc. Kyoto IUTAM Conference, 1983(North Holland, Amsterdam 1984)Google Scholar
  2. 10.2
    P. Bergé, Y.Pomeau, Ch. Vidal: L'Ordre dans le chaos (Hermann, Paris 1984)Google Scholar
  3. 10.3
    D. Campbell, H. Rose (eds.): Order in chaos. Physica 7D, Nos. 1–3 (1983)Google Scholar
  4. 10.3a
    N. Abraham, J. P. Gollub, H. L. Swinney: Testing nonlinear dynamics. Physica 11D, 252 (1984)Google Scholar
  5. 10.3b
    H. L. Swinney, J. P. Gollub: Characterization of hydrodynamic strange attractors. Physica D, to appear (1985)Google Scholar
  6. 10.4
    B. Malraison, P. Atten, P. Bergé, M. Dubois: Dimension of strange attractors: an experimental determination for the chaotic regime of two chaotic systems. J. Phys. Lett. (Paris) 44, L 897 (1983)Google Scholar
  7. 10.5
    J. D. Farmer, J. Hart, P. Weidman: A phase space analysis of a baroclinic flow. Phys. Lett. 91 A, 22 (1982)Google Scholar
  8. 10.5
    J. Guckenheimer, G. Buzyna: Dimension measurements for geostrophic turbulence. Phys. Rev. Lett. 51, 1438 (1983)Google Scholar
  9. 10.6
    S. Ciliberto, J.P. Gollub: Pattern competition leads to chaos. Phys. Rev. Lett. 52, 922 (1984)Google Scholar
  10. 10.6a
    Chaotic mode competition in parametrically forced surface waves. J. Fluid Mech., to appear (1985)Google Scholar
  11. 10.7
    A. Brandstater, J. Swift, H. L. Swinney, A. Wolf, J. D. Farmer, E. Jen, J.P. Crutchfield: Low dimensional chaos in a hydrodynamic system. Phys. Rev. Lett. 51, 1442 (1983)Google Scholar
  12. 10.8
    G. Ahlers: Onset of convection and turbulence in a cylindrical container, in Systems Far From Equilibrium, ed. by L. Garrido and J. Garcia (Springer, Berlin, Heidelberg 1980)Google Scholar
  13. 10.9
    F. Busse: Transition to turbulence in thermal convection with and without rotation, in Ransition and Turbulence, ed. by R. E. Meyer (Academic, New York 1981)Google Scholar
  14. 10.10
    J. P. Gollub: Recent experiments on the transition to turbulent convection, in Nonlinear Dynamics and Turbulence, ed. by G.I.Barenblatt, G.Iooss, and D.D.Joseph (Pittman, New York 1983)Google Scholar
  15. 10.11
    M. J. Feigenbaum: Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19,25 (1978)Google Scholar
  16. 10.12
    A. Libchaber, J. Maurer: Une experience de Rayleigh-Bénard de géometrie réduite: multiplication, accrochage, et démultiplication de fréquences. J. Physique 41, 13 (1980)Google Scholar
  17. 10.13
    J. P. Gollub, S. V. Benson: Many routes to turbulent convection. J. Fluid Mech. 100, 449 (1980).Google Scholar
  18. 10.14
    M. Giglio, S. Musazzi, U. Perini: Transition to chaotic behavior via a reproducible sequence of period-doubling bifurcations. Phys. Rev. Lett. 47, 243 (1981)Google Scholar
  19. 10.15
    A. Libchaber, C. Laroche, S. Fauve: Period doubling cascade in mercury, a quantitative measurement. J. Physique Lett. 43, L211 (1982)Google Scholar
  20. 10.16
    M. Dubois, M. A. Rubio, P. Bergé: Experimental evidence of intermittencies associated with a subharmonic bifurcation. Phys. Rev. Lett. 51, 1446 (1983)Google Scholar
  21. 10.17
    A. P. Fein, M. S. Heutmaker, J. P. Gollub: Scaling at the transition from quasiperiodicity to chaos in a hydrodynamic system. Physica Scripta (to appear)Google Scholar
  22. 10.18
    J.P. Gollub, A. R. McCarriar, J. F. Steinman: Convective pattern evolution and secondary instabilities. J. Fluid Mech. 125, 259 (1982)Google Scholar
  23. 10.18a
    J. P. Gollub, A. R. McCarriar: Convective patterns in Fourier space. Phys. Rev. A 26, 3470 (1982)Google Scholar
  24. 10.18b
    M. S. Heutmaker, P. N. Fraenkel, J. P. Gollub: Convection patterns: Time evolution of the wavevector field. Phys. Rev. Lett. 54, 1369 (1985)Google Scholar
  25. 10.19
    V. Croquette, M. Mory, F. Schosseler: Rayleigh-Bénard convective structures in a cylindrical container, J. Physique 44, 293 (1983)Google Scholar
  26. 10.19a
    A.Pocheau, V. Croquette: Dislocation motions: a wavenumber selection mechanism in Rayleigh-Bénard convection. J. Physique 45, 35 (1984)Google Scholar
  27. 10.20
    J. A. Whitehead: The propagation of dislocations in the Rayleigh-Bénard rolls and bimodal fow. J. Fluid Mech. 75, 715 (1976)Google Scholar
  28. 10.21
    V. Steinberg, G. Ahlers, D. S. Cannell: Pattern formation and wave-number selection by Rayleigh-Bénard convection in a cylindrical container. Physica Scripta (to appear)Google Scholar
  29. 10.22
    H.Haken: Advanced Synergetics, Instability Hierarchies of Self-Organizing Systems and Devices, Springer Ser. Syn., Vol. 20 (Springer, Berlin, Heidelberg 1983)Google Scholar
  30. 10.23
    M. C. Cross: Ingredients of a theory of convective textures close to onset. Phys. Rev. A25, 1065 (1982)Google Scholar
  31. 10.24
    H. S. Greenside, W. M. Coughran, Jr., N. L. Schryer: Nonlinear pattern formation near the onset of Rayleigh-Bénard convection. Phys. Rev. Lett. 49, 726 (1982)Google Scholar
  32. 10.25
    Y. Pomeau, S. Zaleski, P. Manneville: Dislocation motion in cellular structures. Phys. Rev. A 27, 2710 (1983)Google Scholar
  33. 10.26
    M. C. Cross, P. G. Daniels, P. C. Hohenberg, E. D. Siggia: Phase-winding solutions in a finite container above the convective threshold. J. Fluid Mech. 127, 157 (1983)Google Scholar
  34. 10.27
    E. D. Siggia, A. Zippelius: Dynamics of defects in Rayleigh-Bénard convection. Phys. Rev. A 24, 1036 (1981)Google Scholar
  35. 10.28
    E. D. Siggia, A. Zippelius: Pattern selection in Rayleigh-Bénard convection near threshold. Phys. Rev. Lett. 47, 835 (1981)Google Scholar
  36. 10.29
    G. Grötzbach: Direct numerical simulation of laminar and turbulent B6nard convection. J. Fluid Mech. 119, 27 (1982)Google Scholar
  37. 10.30
    J. B. McLaughlin, S. A. Orszag: Transition from periodic to chaotic thermal convection. J. Fluid Mech. 122, 123 (1982)Google Scholar
  38. 10.30 a
    J. H. Curry, J. R. Herring, J. Loncaric, S. A. Orszag: Order and disorder in two-and threedimensional Bénard convection. J. Fluid Mech. 147, 1 (1984)Google Scholar
  39. 10.31
    G. Ahlers, P. C. Hohenberg, M. Lücke: Externally modulated Rayleigh-B6nard convection experiment and theory. Phys. Rev. Lett. 53, 48 (1984)Google Scholar
  40. 10.32
    E. Knobloch, N. O. Weiss, L. N. DaCosta: Oscillatory and steady convection in a magnetic field. J. Fluid Mech. 113, 153 (1981)Google Scholar
  41. 10.33
    F. H. Busse, R. M. Clever: On the stability of convection rolls in the presence of a vertical magnetic field. Phys. Fluids 25, 931 (1982)Google Scholar
  42. 10.34
    F. H. Busse, R. M. Clever: On the stability of convection rolls in the presence of a horizontal magnetic field. J. Méc. Théor. Appl. 2, 495 (1983)Google Scholar
  43. 10.35
    A. Libchaber, S. Fauve, C. Laroche: Two-parameter study of the routes to chaos. Physica 7D, 73 (1983Google Scholar
  44. 10.36
    G. Ahlers, D. S. Cannell: Vortex-front propagation in rotating Couette-Taylor flow. Phys. Rev. Lett. 50, 1583 (1983)Google Scholar
  45. 10.37
    G. Ahlers, D. S. Cannell, M. A. Dominguez-Lerma: Fractional mode numbers in wavy Taylor vortex flow. Phys. Rev. Lett. 49, 368 (1982)Google Scholar
  46. 10.38
    G. Ahlers, D. S. Cannell, M. A. Dominguez-Lerma: Possible mechanism for transitions in wavy Taylor vortex flow. Phys. Rev. A27, 1225 (1983)Google Scholar
  47. 10.39
    C. D. Andereck, R. Dickman, H. L. Swinney: New flows in a circular Couette system. Phys. Fluids 26, 1395 (1983)Google Scholar
  48. 10.40
    C. D. Andereck, S. S. Liu, H. L. Swinney: Flow regimes in a circular Couette system with independently rotating cylinders, to be published (1985)Google Scholar
  49. 10.41
    I.P. Andreichikov: Branching of the secondary modes in the flow between cylinders. Fluid Dynamics 12, 38 (1977). Translated from Izvestiya Academic Nauk SSSR, Mekhanika Zhicbkosti i Goza, No. 1, 47 (1977)Google Scholar
  50. 10.42
    A. Barcilon, J. Brindley: Organized structures in turbulent Taylor-Couette flow. J. Fluid Mech. 143, 429 (1984)Google Scholar
  51. 10.43
    T. B. Benjamin, T. Mullin: Anomalous modes in the Taylor experiment. Proc. R. Soc. London A377, 221 (1981)Google Scholar
  52. 10.44
    T. B. Benjamin, T. Mullin: Notes on the multiplicity of flows in the Taylor experiment. J. Fluid Mech. 121, 219 (1982)Google Scholar
  53. 10.45
    H. Brand, M. Cross: Phase dynamics for the wavy vortex state of the Taylor instability. Phys. Rev. A27, 1237 (1983)Google Scholar
  54. 10.46
    A. Brandstater, U. Gerdts, A. Lorenzen, G. Pfister: Structure and dynamics of nonstationary Taylor-vortex flow, in Nonlinear Phenomena at Instabilities and Phase Transitions, ed. by T. Riste (Plenum, New York 1981)Google Scholar
  55. 10.47
    A. Brandstater, G.Pfister, E.O. Schulz-DuBois: Excitation of a Taylor vortex mode having resonant dependence of coherence length. Phys. Lett. 88 A, 407 (1982)Google Scholar
  56. 10.48
    A. Brandstater, H. L. Swinney: Distinguishing low dimensional chaos from random noise in a hydrodynamic experiment, in Fluctuations and Sensitivity in Nonequilibrium Systems, ed. by W. Horsthemke and D. Kondepudi, Springer Proc. Phys. 1, (Springer, Berlin, Heidelberg 1984) pp. 166–171; Low-dimensional strange attractors in Couette-Taylor flow (to be published) see also [10.7]Google Scholar
  57. 10.49
    A. Brandstater, J. Swift, H. L. Swinney, A. Wolf: A strange attractor in a Couette-Taylor experiment, in Turbulence and Chaotic Phenomena in Fluids, ed. by T. Tatsumi (NorthHolland, Amsterdam 1984), p.179Google Scholar
  58. 10.50
    D. S. Cannell, M. A. Dominguez-Lerma, G. Ahlers: Experiments on wave number selection in rotating Couette-Taylor flow. Phys. Rev. Lett. 50, 1365 (1983)Google Scholar
  59. 10.51
    K. A. Cliffe: Numerical calculations of two-cell and single-cell Taylor flows. J. Fluid Mech. 135, 219 (1983)Google Scholar
  60. 10.52
    P.Chossat, G. Iooss: Primary and secondary bifurcations in the Couette-Taylor problem. Preprint (1984)Google Scholar
  61. 10.53
    G. Cognet, A. Bouabdallah, A. A. Aider: Laminar-turbulent transition in Taylor-Couette flow, in Stability in the Mechanics of Continua, ed. by F. H. Shroeder (Springer, Berlin, Heidelberg 1982) p. 330Google Scholar
  62. 10.54
    J. A. Cole: The effect of cylinder radius ratio on wavy vortex onset, in Third Taylor Vortex Flow Working Party Meeting (Université de Nancy, 1983) p. 1.a1Google Scholar
  63. 10.55
    M. Cross: Wavenumber selection of soft boundaries near threshold. Phys. Rev. A29, 391 (1984)Google Scholar
  64. 10.56
    R. J. Donnelly, K.Park, R. Shaw, R. W. Walden: Early nonperiodic transitions in Couette flow. Phys. Rev. Lett. 44, 987 (1980)Google Scholar
  65. 10.57
    P. M. Eagles, K. Eames: Taylor vortices between almost cylindrical boundaries. J. Eng. Math. 17, 263 (1983)Google Scholar
  66. 10.58
    H. Fasel, O. Booz: Numerical investigations of supercritical Taylor vortex flow for a wide gap. J. Fluid Mech. 138, 21 (1984)Google Scholar
  67. 10.59
    M. Golubitsky, I. Stewart: Symmetry and stability in Taylor-Couette flow. Preprint (1984)Google Scholar
  68. 10.60
    M. Gorman, L. A. Reith, H. L. Swinney: Modulation patterns, multiple frequencies, and other phenomena in circular Couette flow. Ann. N.Y. Acad. Sci. 357, 10 (1980)Google Scholar
  69. 10.61
    M. Gorman, H. L. Swinney: Spatial and temporal characteristics of modulated waves in the circular Couette system. J. Fluid Mech. 117, 123 (1982)Google Scholar
  70. 10.61 a
    M. Gorman,H. L. Swinney, D. A. Rand:Doublyperiodic circularCouette flow Experiments compared with dynamics and symmetry. Phys. Rev. Lett. 46, 992 (1981)Google Scholar
  71. 10.62
    R. Graham, J. A. Domaradzki: Local amplitude equation of Taylor vortices and its boundary condition. Phys. Rev. A26,1572 (1982)Google Scholar
  72. 10.63
    P. Hall: Centrifugal instabilities of circumferential flows in finite cylinders: The wide gap problem. Proc. R. Soc. London A 384, 359 (1982)Google Scholar
  73. 10.64
    P. Hall: The evolution equations for Taylor vortices in the small gap limit. Phys. Rev. A 29, 2921 (1984)Google Scholar
  74. 10.65
    C. A. Jones: Nonlinear Taylor vortices and their stability. J. Fluid Mech. 102, 249 (1981)Google Scholar
  75. 10.66
    C. A. Jones: On flow between counter-rotating cylinders. J. Fluid Mech. 120, 433 (1982)Google Scholar
  76. 10.67
    G. P. King, Y. Li, W. Lee, H. L. Swinney, P. S. Marcus: Wave speeds in wavy Taylor vortex flow. J. Fluid Mech. 141, 365 (1984)Google Scholar
  77. 10.68
    G.P. King, H. L. Swinney: Limits of stability and irregular flow patterns in wavy vortex flow. Phys. Rev. A 27, 1240 (1983)Google Scholar
  78. 10.69
    A. Lorenzen, G. Pfister, T. Mullin: End effects on the transition to time-dependent motion in Taylor experiment. Phys. Fluids 26, 10 (1983)Google Scholar
  79. 10.70
    M. Lücke, M. Mihelcic, K. Wingerath: Propagation of Taylor vortex fronts into unstable circular Couette flow. Phys. Rev. Lett. 52, 625 (1984)Google Scholar
  80. 10.71
    M. Lücke, M. Mihelcic, K. Wingerath, G.Pfister: Flow in a small annulus between concentric cylinders. J. Fluid Mech. 140, 343 (1984)Google Scholar
  81. 10.72
    V. S. L'vov, A. A. Predtechenskii, A. I. Chernykh: Bifurcation and chaos in a system of Taylor vortices: A natural and a numerical experiment. Sov. Phys. JETP 53, 562 (1981)Google Scholar
  82. 10.73
    V.S.L'vov, A.A.Predtechensky: On Landau and stochastic attractor pictures in the problem of transition to turbulence. Physica 2 D, 38 (1981)Google Scholar
  83. 10.74
    P. S. Marcus: Simulation of Taylor-Couette flow. I. Numerical methods and comparison with experiment. Fluid Mech. 146, 45 (1984)Google Scholar
  84. 10.75
    P. S. Marcus: Simulation of Taylor-Couette flow: II. Numerical results for wavy vortex flow with one travelling wave. J. Fluid Mech. 146, 65 (1984)Google Scholar
  85. 10.76
    R. Meyer-Spasche, H. B. Keller: Computations of the axisymmetric flow between rotating cylinders. J. Comp. Phys. 35, 100 (1980)Google Scholar
  86. 10.77
    R. Meyer-Spasche, H. B. Keller: Numerical study of Taylor-vortex flows between rotating cylinders, I and II. Appl. Math. Repts. Caltech (1978 and 1984). R. Meyer-Spasche, H. B. Keller: Some bifurcation diagrams for Taylor vortex flows. Appl. Math. Rept., Caltech (1984)Google Scholar
  87. 10.78
    G. Frank, R. Meyer-Spasche: Computation of transitions in Taylor vortex flows. J. Appl. Math. Phys. (ZAMP) 32, 710 (1981)Google Scholar
  88. 10.79
    T. Mullin: Mutations of steady cellular flows in the Taylor experiment. J. Fluid Mech. 121, 207 (1982)Google Scholar
  89. 10.80
    T. Mullin, T. B. Benjamin, K. Schätzel, E. R. Pike: New aspects of unsteady Couette flow. Phys. Lett. 83 A, 333 (1981)Google Scholar
  90. 10.81
    T.Mullin, G.Pfister, A.Lorenzen: New observations on hysteresis effects in Taylor-Couette flow. Phys. Fluids 25, 1134 (1982)Google Scholar
  91. 10.82
    T. Mullin, T. Brooke Benjamin: Transition to oscillatory motion in the Taylor experiment. Nature 288, 567 (1980)Google Scholar
  92. 10.83
    K.Park: Unusual transition sequence in Taylor wavy vortex flow. Phys. Rev. A29, 3458 (1984)Google Scholar
  93. 10.84
    K. Park, G. L. Crawford: Deterministic transitions in Taylor wavy vortex flow. Phys. Rev. Lett. 50, 343 (1983)Google Scholar
  94. 10.85
    K. Park, G. L. Crawford, R. J. Donnelly: Determination of transition in Couette flow in finite geometries. Phys. Rev. Lett. 47, 1448 (1981)Google Scholar
  95. 10.86
    K. Park, G. L. Crawford, R. J. Donnelly: Characteristic lengths in the wavy vortex state of Taylor-Couette flow. Phys. Rev. Lett. 51, 1352 (1983)Google Scholar
  96. 10.86a
    K.Park, K.Jeong: Stability boundary of Taylor vortex flow. Phys. Fluids 27, 2201 (1984)Google Scholar
  97. 10.87
    K.Park, R. J. Donnelly: Study of the transition to Taylor vortex flow. Phys. Rev. A 24, 2277 (1981)Google Scholar
  98. 10.88
    B. Perrin: Apparition d'un mode periodique dans le domaine turbulent d'un écoulement de Couette cylindrique. J. Phys. Lett. (Paris) 43, L 5 (1982)Google Scholar
  99. 10.89
    G. Pfister, U. Gerdts: Dynamics of Taylor wavy vortex flow. Phys. Lett. 83 A, 23 (1981)Google Scholar
  100. 10.90
    G. Pfister, I.Rehberg: Space-dependent order parameter in circular Couette flow tran sitions. Phys. Lett. 83 A, 19 (1981)IGoogle Scholar
  101. 10.91
    D. Rand: Dynamics and symmetry, predictions for modulated waves in rotating fluids. Arch. Rat. Mech. Analysis 79, 1 (1982)Google Scholar
  102. 10.92
    R. S. Shaw, C. D. Andereck, L. A. Reith, H. L. Swinney: Superposition of traveling waves in the circular Couette system. Phys. Rev. Lett. 48, 1172 (1982)Google Scholar
  103. 10.93
    M. Shearer, I. C. Walton: On bifurcation and symmetry in Bénard convection and Taylor vortices. Stud. Appl. Math. 65, 85 (1981)Google Scholar
  104. 10.94
    G. P. Smith, A. A. Townsend: Turbulent Couette flow between concentric cylinders at large Taylor numbers. J. Fluid Mech. 123, 187 (1982)Google Scholar
  105. 10.95
    P. Tabeling: Dynamics of the phase variable in the Taylor vortex system. J. Phys. Lett. (Paris) 44, L 665 (1983)Google Scholar
  106. 10.96
    I. C. Walton: The transition to Taylor vortices in a closed rapidly rotating cylindrical annulus. Proc. R. Soc. London A 372, 201 (1980)Google Scholar
  107. 10.97
    H. Yahata: Temporal development of the Taylor vortices in a rotating fluid III. Prog. Theor. Phys. 64, 782 (1980)Google Scholar
  108. 10.98
    H. Yahata: Temporal development of the Taylor vortices in a rotating fluid IV. Prog. Theor. Phys. 66, 879 (1981)Google Scholar
  109. 10.99
    H. Yahata: Temporal development of the Taylor vortices in a rotating fluid V. Prog. Theor. Phys. 69, 396 (1983)Google Scholar
  110. 10.100
    L. H. Zhang, H. L. Swinney: Nonpropagating oscillatory modes in Couette-Taylor flow. Phys. Rev. A31, 1006 (1985)Google Scholar
  111. 10.101
    D. J. Benney, L. H. Gustavsson: A new mechanism for linear and nonlinear hydrodynamic stability. Stud. Appl. Math. 64, 185 (1981)Google Scholar
  112. 10.102
    L. H. Gustavsson, L. S. Hultgren: A resonance mechanism in plane Couette flow. J. Fluid Mech. 98, 149 (1980)Google Scholar
  113. 10.103
    S. N. Brown, K. Stewartson: On the algebraic decay of disturbance in a stratified linear shear flow. J. Fluid Mech. 100, 811 (1980)Google Scholar
  114. 10.104
    F. T. Smith, R. J. Bodonyi: Nonlinear critical layers and their development in streaming-flow stability. J. Fluid Mech. 118, 165 (1982)Google Scholar
  115. 10.105
    F. T. Smith, R. J. Bodonyi: Amplitude-dependent neutral modes in the Hagen-Poiseuille flow through a circular pipe. Proc. R. Soc. Lond. A384, 463 (1982)Google Scholar
  116. 10.106
    S. A. Orszag, A. T. Patera: Secondary instability of wall-bounded shear flows. J. Fluid Mech. 128, 347 (1983)Google Scholar
  117. 10.107
    A.J. Chorin: Vortex models and boundary layer instability. SIAM J. Sci. Stat. Comput. 1, 1 (1980)Google Scholar
  118. 10.108
    D.Oster, I. Wygnanski: The forced mixing layer between parallel streams. J. Fluid Mech. 123, 91 (1982)Google Scholar
  119. 10.109
    M. Gad-et-Hak, R. F. Blackwelder, J. J. Riley: On the growth of turbulent regions in laminar boundary layers. J. Fluid Mech. 110, 73 (1981)Google Scholar
  120. 10.110
    P. G. Drazin, W. H. Reid: Hydrodynamic Stability (Cambridge Univ. Press, London 1981)Google Scholar
  121. 10.111
    H. Huppert, J. S. Turner: Double diffusive convection. J. Fluid Mech. 106, 299 (1981)Google Scholar
  122. 10.112
    R. Hide: High vorticity regions in rotating thermally driven flows. Met. Mag. 110, 335 (1981)Google Scholar
  123. 10.112 a
    Also in L. Bengtson, J. Lighthill (eds.): Intense Atmospheric Yortices (Springer, Berlin, Heidelberg, 1982) p. 313Google Scholar
  124. 10.113
    J. L. Hudson, J. C. Mankin: Chaos in the Belousov-Zhabotinskii reaction. J. Chem. Phys. 74, 6171 (1981)Google Scholar
  125. 10.114
    J. C. Roux: Experimental studies of bifurcations leading to chaos in the BelousovZhabotinskii reaction. Physica 7 D, 57 (1983)Google Scholar
  126. 10.115
    J. C. Roux, R. H. Simoyi, H. L. Swinney: Observation of a strange attractor. Physica 8 D, 257 (1983)Google Scholar
  127. 10.116
    R. H. Simoyi, A. Wolf, H. L. Swinney: One-dimensional dynamics in a multi-component chemical reaction. Phys. Lett. 49, 245 (1982)Google Scholar
  128. 10.117
    C. Vidal, J. C. Roux, S. Bachelart: Experimental study of the transition to turbulence in the Belousov-Zhabotinskii reaction. Ann. N.Y. Acad. Sci. 357, 377 (1980)Google Scholar
  129. 10.118
    M. R. Guevara, L. Glass: Phase locking, period doubling bifurcations and chaos in a mathematical model of a periodically driven biological oscillator: A theory for the entrainment of biological oscillators and the generation of cardiac dysrhythmias. J. Math. Biol. 14, 1 (1982)Google Scholar
  130. 10.119
    M. R. Guevara, L. Glass, A. Shrier: Phase locking, period-doubling bifurcations and irregular dynamics in periodically stimulated cardiac cells. Science 214, 1350 (1981)Google Scholar
  131. 10.120
    M. C. Mackey, L. Glass: Oscillation and chaos in physiological control systems. Science 197, 287 (1977)Google Scholar
  132. 10.121
    L. Glass, M. R. Guevara, A. Shrier, R. Perez: Bifurcation and chaos in a periodically stimulated cardiac oscillator. Physica 7D, 89 (1983)Google Scholar
  133. 10.122
    E. Ben-Jacob, Y. Braiman, R. Shainsky: Microwave-induced “devil's staircase” structure and “chaotic” behavior in current-fed Josephson junctions. Appl. Phys. Lett. 38, 822 (1981)Google Scholar
  134. 10.123
    B. A. Huberman, J. E. Crutchfield, N. H. Packard: Noise phenomena in Josephson junctions. Appl. Phys. Lett. 37, 750 (1980)Google Scholar
  135. 10.124
    R. F. Miracky, J. Clarke, R. H. Kock: Chaotic noise observed in a resistively shunted selfresonant Josephson tunnel junction. Phys. Rev. Lett. 50, 856 (1983)Google Scholar
  136. 10.125
    J. Testa, J. Press, C. Jeffries: Evidence for universal chaotic behavior of a driven nonlinear oscillator. Phys. Rev. Lett. 48, 714 (1982)Google Scholar
  137. 10.126
    S. W. Teitsworth, R. M. Westervelt, E. E. Haller: Nonlinear oscillations and chaos in electrical breakdown in Ge. Phys. Rev. Lett. 51, 825 (1983)Google Scholar
  138. 10.127
    H. M. Gibbs, F. A. Hopf, D. L. Kaplan, R. L. Shoemaker: Observation of chaos in optical bistability. Phys. Rev. Lett. 46, 474 (1981)Google Scholar
  139. 10.128
    K. Ikeda, H. Daido, O. Akomoto: Optical turbulence: Chaotic behavior of transmitted light from a ring cavity. Phys. Rev. Lett. 45, 709 (1980)Google Scholar
  140. 10.129
    R. S. Gioggia, N. B. Abraham: Anomalous mode pulling, instabilities and chaos in a singlemode, 3.39 micron HeNe laser. Phys. Rev. A 29 (1984)Google Scholar
  141. 10.130
    F. T. Arecchi, R. Meucci, G.Puccioni, J. Tredicce: Experimental evidence of subharmonic bifurcations, multi-stability, and turbulence in a Q-switched gas laser. Phys. Rev. Lett. 49, 1217 (1982)Google Scholar
  142. 10.131
    L. Kramer, E. Ben-Jacob, H. Brand, M. C. Cross: Wavelength selection in systems far from equilibrium. Phys. Rev. Lett. 49, 1891 (1982)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • F. H. Busse
  • J. P. Gollub
  • S. A. Maslowe
  • H. L. Swinney

There are no affiliations available

Personalised recommendations