Instabilities and chaos in nonhydrodynamic systems

  • J. M. Guckenheimer
Part of the Topics in Applied Physics book series (TAP, volume 45)


Periodic Orbit Periodic Point Chaotic Behavior Rotation Number Lorenz System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 9.1
    F. H. Busse: Magnetohydrodynamics of the earth's dynamo. Annu. Rev. Fluid Mech. 10, 435–462 (1978)Google Scholar
  2. 9.2
    A. E. Cook, P. H. Roberts: The Rikitake two-disc dynamo system. Proc. Camb. Philos. Soc. 68, 547–569 (1970)Google Scholar
  3. 9.3
    K. A. Robbins: A new approach to subcritical instability and turbulent transitions in a simple dynamo. Math. Proc. Camb. Philos. Soc. 82, 309–325 (1977)Google Scholar
  4. 9.4
    M. W. Hirsch, S. Smale: Differential Equations, Dynamical Systems, and Linear Algebra. (Academic Press, New York 1974)Google Scholar
  5. 9.5
    H. Haken: Analogy between higher instabilities in fluids and lasers. Phys. Lett. 53 A, 77–78 (1975)Google Scholar
  6. 9.6
    L. F. Olsen, H. Degn: Chaos in an enzyme reaction. Nature 267, 177–178 (1977)Google Scholar
  7. 9.7
    R. A. Schmitz, K. R. Graziani, J. L. Hudson: Experimental evidence of chaotic states in the Belousov-Zhabotinskii reaction. J. Chem. Phys. 67, 3040–3044 (1977)Google Scholar
  8. 9.8
    O. E. Rössler, K. Wegmann: Chaos in the Zhabotinskii reaction. Nature 271, 89–90 (1978)Google Scholar
  9. 9.9
    J.J.Tyson: The Belousov-Zhabotinskii reaction, Lecture Notes in Biomathematics, Vol. 10 (Springer, Berlin, Heidelberg, New York 1976)Google Scholar
  10. 9.10
    J.J.Tyson: On the appearance of chaos in the Belousov reaction. J. Math. Biol. 5, 351–362 (1978)Google Scholar
  11. 9.11
    A. T. Winfree: Spiral waves of chemical activity. Science 175, 634–636 (1972)Google Scholar
  12. 9.12
    N. Kopell, L.N.Howard: Pattern formation in the Belousov reaction. Lect. Math. Life Sci. 7, 201–216 (1974)Google Scholar
  13. 9.13
    R. J. Field, R. M. Noyes: Oscillations in chemical systems. IV. Limit cycle behavior in a model of a real chemical reaction. J. Chem. Phys. 60, 1877–1884 (1974)Google Scholar
  14. 9.14
    9R. M. May: Simple mathematical models with very complicated dynamics. Nature 261, 459–466 (1976)Google Scholar
  15. 9.15
    T. Li, J. A. Yorke: Period three implies chaos. Am. Math. Mon. 82, 985–992 (1975)Google Scholar
  16. 9.16
    J. Guckenheimer, G.Oster, A.Ipaktchi: Dynamics of density dependent population models. J. Math. Biol. 4, 101–147 (1977)Google Scholar
  17. 9.17
    M. L. Cartwright, J. E. Littlewood: On nonlinear differential equations of the second order: I. The equation ÿ + k (1-y 2) ý + y = bλk cos (λt + a), k large. J. London Math. Soc. 20, 180–189 (1945)Google Scholar
  18. 9.18
    S. Smale: Differentiable dynamical systems. Bull. Am. Math. Soc. 73, 747–817 (1967)Google Scholar
  19. 9.19
    M. Levi: Memoirs Am. Math. Soc. 32, No. 244 (July 1981)Google Scholar
  20. 9.20
    N. Levinson: A second order differential equation with singular solutions. Ann. Math. 50, 127–153 (1949)Google Scholar
  21. 9.21
    J. Guckenheimer: Symbolic dynamics and relaxation oscillations. Physica 1D, 227–235 (1980)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • J. M. Guckenheimer

There are no affiliations available

Personalised recommendations