Instabilities in geophysical fluid dynamics

  • D. J. Tritton
  • P. A. Davies
Part of the Topics in Applied Physics book series (TAP, volume 45)


Shear Layer Richardson Number Stratify Fluid Baroclinic Instability Rossby Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 8.1
    J.G.Charney: “Planetary Fluid Dynamics”, in Dynamical Meteorology, ed. by P.Morel (Reidel, Dordrecht 1973) pp. 97–352Google Scholar
  2. 8.2
    S.A.Thorpe: Turbulence in stably stratified fluids; a review of laboratory experiments. Boundary-Layer Meteorol. 5, 95–119 (1973)Google Scholar
  3. 8.3
    T.Maxworthy, F.K. Browand: Experiments on rotating and stratified flows; oceanographic application, Annu. Rev. Fluid Mech. 7, 273–305 (1975)Google Scholar
  4. 8.4
    F.S. Sherman, J.Imberger, G.M. Corcos: Turbulence and mixing in stably stratified waters. Annu. Rev. Fluid Mech. 10, 267–288 (1978)Google Scholar
  5. 8.5
    R.Hide: “Some laboratory experiments on free thermal convection in a rotating fluid subject to a horizontal temperature gradient and their relation to the theory of the global atmospheric circulation”, in The Global Circulation of the Atmosphere, ed. by G. A. Corby (R. Meteorol. Soc., London 1969) pp. 196–221Google Scholar
  6. 8.6
    R. Hide, P. J. Mason: Sloping convection in a rotating fluid. Adv. Phys. 24, 47–100 (1975)Google Scholar
  7. 8.7
    P. G. Drazin: “Variations on a theme of Eady”. In Ref. 8.17, pp. 139–169Google Scholar
  8. 8.8
    J. S. Turner: Double diffusive phenomena. Annu. Rev. Fluid Mech. 6, 37–56 (1974)Google Scholar
  9. 8.9
    J. S. Turner: Laboratory experiments on double-diffusive instabilities. Adv. Chem. Phys. 32, 135–149 (1975)Google Scholar
  10. 8.10
    L.Prandtl: Essentials of Fluid Dynamics (Blackie, London 1952)Google Scholar
  11. 8.11
    D. J. Tritton: Physical Fluid Dynamics (Van Nostrand Reinhold, Wokingham 1977)Google Scholar
  12. 8.12
    A. A. Townsend: The Structure of Turbulent Shear Flow, 2nd ed. (Cambridge University Press, Cambridge 1976)Google Scholar
  13. 8.13
    J.S.Turner: Buoyancy Effects in Fluids (Cambridge University Press, Cambridge 1973)Google Scholar
  14. 8.14
    C-S. Yih: Dynamics of Nonhomogeneous Fluids (Macmillan, New York 1965)Google Scholar
  15. 8.15
    G. K. Batchelor: An Introduction to Fluid Dynamics (Cambridge University Press, Cambridge 1967)Google Scholar
  16. 8.16
    H.P. Greenspan: The Theory of Rotating Fluids (Cambridge University Press, Cambridge 1968)Google Scholar
  17. 8.17
    P. H. Roberts, A. M. Howard (eds.): Rotating Fluids in Geophysics (Academic Press, London 1978)Google Scholar
  18. 8.18
    L. N. Howard: Fundamentals of the theory of rotating fluids. J. Appl. Mech. 30, 481–485 (1963)Google Scholar
  19. 8.19
    M.J.Lighthill: Dynamics of rotating fluids; a survey. J. Fluid Mech. 26, 411–431 (1966)Google Scholar
  20. 8.20
    R. Hide: Dynamics of rotating fluids. Q. J. R. Meteorol. Soc. 103, 1–28 (1977)Google Scholar
  21. 8.21
    J. R. Holton: An Introduction to Dynamic Meteorology (Academic Press, New York 1972)Google Scholar
  22. 8.22
    O.M.Phillips: The Dynamics of the Upper Ocean, 2nd ed. (Cambridge University Press, Cambridge 1978)Google Scholar
  23. 8.23
    M. E. Stern: Ocean Circulation Physics (Academic Press, New York 1975)Google Scholar
  24. 8.24
    R.Hide: Motions in planetary atmospheres. Q. J. R. Meteorol. Soc. 102, 1–23 (1976)Google Scholar
  25. 8.25
    P.H. Stone: “The meteorology of the Jovian atmosphere”, in Jupiter, Studies of the Interior, Atmosphere, Magnetosphere, and Satellites, ed. by T.Gehrels (University of Arizona Press, Tucson 1976)Google Scholar
  26. 8.26
    V.P.Starr: Physics of Negative Viscosity Phenomena (McGraw-Hill, New York 1968)Google Scholar
  27. 8.27
    J. Lighthill: Waves in Fluids (Cambridge University Press, Cambridge 1978)Google Scholar
  28. 8.28
    H. G. Moll: Die atmosphärische Umströmung Madeiras. Beitr. Phys. Atmos. 44, 227–244 (1971)Google Scholar
  29. 8.29
    E. Berger, R. Wille: Periodic flow phenomena. Annu. Rev. Fluid Mech. 4, 313–340 (1972)Google Scholar
  30. 8.30
    E. Palmén, C.W.Newton: Atmospheric Circulation Systems (Academic Press, New York 1969)Google Scholar
  31. 8.31
    G. W. Platzmann: The Rossby wave. Q. J. R. Meteorol. Soc. 94, 225–248 (1968)Google Scholar
  32. 8.32
    J. R. Bates: Dynamics of stationary ultra-long waves in middle latitudes. Q. J. R. Meteorol. Soc. 103, 397–430 (1977)Google Scholar
  33. 8.33
    J.T.Houghton: The Physics of Atmospheres (Cambridge University Press, Cambridge 1977)Google Scholar
  34. 8.34
    P. G. Drazin, L. N. Howard: Hydrodynamic stability of parallel flow of inviscid fluid. Adv. Appl. Mech. 9,1–89 (1966)Google Scholar
  35. 8.35
    Y. Mori, Y. Uchida: Forced convective heat transfer between horizontal flat plates. Int. J. Heat Mass Transfer 9, 803–817 (1966)Google Scholar
  36. 8.36
    M. Akiyama, G. J. Hwang, K. C. Cheng: Experiments on the onset of longitudinal vortices in laminar forced convection between horizontal plates. J. Heat Transfer 93, 335–341 (1971)Google Scholar
  37. 8.37
    F. M. Richter, B.Parsons: On the interaction of two scales of convection in the mantle. J. Geophys. Res. 80, 2529–2541 (1975)Google Scholar
  38. 8.38
    R. M. Clever, F. H. Busse, R. E. Kelly: Instabilities of longitudinal convection rolls in Couette flow. Z. angew. Math. Phys. 28, 771–783 (1977)Google Scholar
  39. 8.39
    D. J. Tritton: Turbulent free convection above a heated plate inclined at a small angle to the horizontal. J. Fluid Mech. 16, 282–312 (1963)Google Scholar
  40. 8.40
    A. A. Townsend: Mixed convection over a heated horizontal plane. J. Fluid Mech. 55, 209–228 (1972)Google Scholar
  41. 8.41
    J. W. Miles: On the stability of heterogeneous flows. J. Fluid Mech. 10, 496–508 (1961)Google Scholar
  42. 8.42
    P.Hazel: Numerical studies of the stability of inviscid stratified shear flows. J. Fluid Mech. 51, 39–62 (1972)Google Scholar
  43. 8.43
    K.S.Gage: Linear viscous stability theory for stably stratified shear flow; a review. Boundary-Layer Meteorol. 5, 3–17 (1973)Google Scholar
  44. 8.44
    S. A. Maslowe: Finite-amplitude Kelvin-Helmholtz billows. Boundary-Layer Meteorol. 5, 43–52 (1973)Google Scholar
  45. 8.45
    S. A. Maslowe: Weakly non-linear stability theory of stratified shear flows. Q. J. R. Meteorol, Soc. 103, 769–783 (1977)Google Scholar
  46. 8.46
    P.C.Patnaik, F.S.Sherman, G.M.Corcos: A numerical simulation of Kelvin-Helmholtz waves of finite amplitude. J. Fluid Mech. 73, 215–240 (1976)Google Scholar
  47. 8.47
    S. N. Brown, K. Stewartson: The evolution of a small inviscid disturbance to a marginally unstable stratified shear flow; stage two. Proc. R. Soc. London A 363, 175–194 (1978)Google Scholar
  48. 8.48
    S.A.Thorpe: Experiments on the stability of stratified shear flows; miscible fluids. J. Fluid Mech. 46, 299–320 (1971)Google Scholar
  49. 8.49
    R. S. Scotti, G. M. Corcos: An experiment on the stability of small disturbances in a stratified free shear layer. J. Fluid Mech. 52, 499–528 (1972)Google Scholar
  50. 8.50
    F. K. Browand, C. D. Winant: Laboratory observations of shear-layer instability in a stratified fluid. Boundary-Layer Meteorol. 5, 67–77 (1973)Google Scholar
  51. 8.51
    D.P. Delisi, G. Corcos: A study of internal waves in a wind tunnel. Boundary-Layer Meteorol. 5, 121–137 (1973)Google Scholar
  52. 8.52
    C. G. Koop: “Instability and Turbulence in a Stratified Shear Layer”; Univ. Southern Calif., Dept. Aerospace Eng. Rep. USCAE 134 (1976)Google Scholar
  53. 8.53
    C.G.Koop, F.K.Browand: Instability and turbulence in a stratified fluid with shear. J. Fluid Mech. 93, 135–160 (1979)Google Scholar
  54. 8.54
    K. A. Browning: Structure of the atmosphere in the vicinity of large-amplitude Kelvin-Helmholtz billows. Q. J. R. Meteorol. Soc. 97, 283–299 (1971)Google Scholar
  55. 8.55
    P. A. Davis, W. R. Peltier: Resonant parallel shear instability in the stratified planetary boundary layer. J. Atmos. Sci. 33, 1287–1300 (1976)Google Scholar
  56. 8.56
    J. L. Lumley, H. A. Panofsky: The Structure of Atmospheric Turbulence (Interscience, New York 1964)Google Scholar
  57. 8.57
    J. E. Hart: Stability of the flow in a differentially heated inclined box. J. Fluid Mech. 47, 547–576 (1971)Google Scholar
  58. 8.58
    E. M. Sparrow, R. B. Husar: Longitudinal vortices in natural convection flow on inclined plates. J. Fluid Mech. 37, 251–256 (1969)Google Scholar
  59. 8.59
    J. R. Lloyd, E. M. Sparrow: On the instability of natural convection flow on inclined plates. J. Fluid Mech. 42, 465–470 (1970)Google Scholar
  60. 8.60
    D. J. Tritton: Transition to turbulence in the free convection boundary layers on an inclined heated plate. J. Fluid Mech. 16, 417–435 (1963)Google Scholar
  61. 8.61
    W. Debler: “The Towing of Bodies in a Stratified Fluid”x; Univ. Michigan, Dept. Engng. Mech., Tech. Rep. EM-71-1 (1971)Google Scholar
  62. 8.62
    P. W. M. Brighton: Strongly stratified flow past three-dimensional obstacles. Q. J. R. Meteorol. Soc. 104, 289–307 (1978)Google Scholar
  63. 8.63
    A. J. Faller, R. Kaylor: Instability of the Ekman spiral with application to the planetary boundary layers. Phys. Fluids 10, Suppl. 212–219 (1967)Google Scholar
  64. 8.64
    P. R. Tatro, E. L. Mollo-Christensen: Experiments on Ekman layer instability. J. Fluid Mech. 28, 531–543 (1967)Google Scholar
  65. 8.65
    D. R. Caldwell, C. W. Van Atta: Characteristics of Ekman boundary layer instabilities. J. Fluid Mech. 44, 145–160 (1970)Google Scholar
  66. 8.66
    J.P. Johnston, R. M. Halleen, D. K. Lezius: Effects of spanwise rotation on the structure of two-dimensional fully developed turbulent channel flow. J. Fluid Mech. 56, 533–558 (1972)Google Scholar
  67. 8.67
    D. J. Tritton: “Turbulence in rotating fluids”. In Ref. 8.17, pp. 105–138Google Scholar
  68. 8.68
    P. Bradshaw: The analogy between streamline curvature and buoyancy in turbulent shear flow. J. Fluid Mech. 36,177–192 (1969)Google Scholar
  69. 8.69
    J. A. Johnson: The stability of shearing motion in a rotating fluid. J. Fluid Mech. 17, 337–352 (1963)Google Scholar
  70. 8.70
    J. E. Hart: Instability and secondary motion in a rotating channel flow. J. Fluid Mech. 45, 341–352 (1971)Google Scholar
  71. 8.71
    D.K.Lezius, J.P.Johnston: Roll-cell instabilities in rotating laminar and turbulent channel flows. J. Fluid Mech. 77, 153–175 (1976)Google Scholar
  72. 8.72
    M. C. Potter, M. D. Chawla: Stability of boundary layer flow subject to rotation. Phys. Fluids 14, 2278–2281 (1971)Google Scholar
  73. 8.73
    F. H. Busse: Shear flow instabilities in rotating systems. J. Fluid Mech. 33, 577–589 (1968)Google Scholar
  74. 8.74
    C. E. Grosch, H. Salwen: The stability of steady and time-dependent plane Poiseuille flow. J. Fluid Mech. 34, 177–205 (1968)Google Scholar
  75. 8.75
    P. H. Rothe, J.P. Johnston: “The Effects of System Rotation on Separation, Reattachment, and Performance in Two-Dimensional Diffusers”; Stanford Univ., Dept. Mech. Engng., Rep. PD-17 (1975)Google Scholar
  76. 8.76
    R. Hide, C. W. Titman: Detached shear layers in a rotating fluid. J. Fluid Mech. 29, 39–60 (1967)Google Scholar
  77. 8.77
    H. Kuo: Dynamic instability of two-dimensional non-divergent flow in a barotropic atmosphere. J. Meteorol. 6, 105–122 (1949)Google Scholar
  78. 8.78
    A.P.Ingersoll, J.N.Cuzzi: Dynamics of Jupiter's cloud bands. J. Atmos. Sci. 26, 981–985 (1969)Google Scholar
  79. 8.79
    A.P.Ingersoll: Pioneer 10 and 11 observations and the dynamics of Jupiter's atmosphere. Icarus 29, 245–253 (1976)Google Scholar
  80. 8.80
    E. A. Eady: Long waves and cyclone waves. Tellus 1, 33–52 (1949)Google Scholar
  81. 8.81
    V. Barcilon: Role of the Ekman layers in the stability of the symmetric regime obtained in a rotating annulus. J. Atmos. Sci. 21, 291–299 (1964)Google Scholar
  82. 8.82
    J. Brindley: Stability of flow in a rotating viscous incompressible fluid subject to differential heating. Phil. Trans. R. Soc. London A 253, 1–25 (1960)Google Scholar
  83. 8.83
    J. S. A. Green: A problem in baroclinic instability. Q. J. R. Meteorol. Soc. 86, 237–251 (1960)Google Scholar
  84. 8.84
    F. P. Bretherton: Critical layer instability in baroclinic flows. Q. J. R. Meteorol. Soc. 92, 325–334 (1966)Google Scholar
  85. 8.85
    F.P. Bretherton: Baroclinic instability and the short wavelength cut-off in terms of potential vorticity. Q. J. R. Meteorol. Soc. 92, 335–346 (1966)Google Scholar
  86. 8.86
    R. Hide, P. J. Mason: On the transition between axisymmetric and non-axisymmetric flow in a rotating liquid annulus subject to a horizontal temperature gradient. Geophys. Astrophys. Fluid Dyn. 10, 121–156 (1978)Google Scholar
  87. 8.87
    P. H. Stone: On non-geostrophic baroclinic instability. J. Atmos. Sci. 23, 390–400 (1966)Google Scholar
  88. 8.88
    P. H. Stone, S. Hess, R. Hadlock, P. Ray: Preliminary results of experiments with symmetric baroclinic instabilities. J. Atmos. Sci. 26, 997–1001 (1969)Google Scholar
  89. 8.89
    T. Maxworthy: A review of Jovian atmospheric dynamics. Planet. Space Sci. 21, 623–641 (1973)Google Scholar
  90. 8.90
    I. C. Walton: The viscous non-linear symmetric baroclinic instability of a zonal shear flow. J. Fluid Mech. 87, 65–84 (1975)Google Scholar
  91. 8.91
    R. Hide: An experimental study of thermal convection in a rotating liquid. Phil. Trans. R. Soc. London A 250, 441–478 (1958)Google Scholar
  92. 8.92
    W. W. Fowlis, R. Hide: Thermal convection in a rotating annulus of liquid: effect of viscosity on the transition between axisymmetric and non-axisymmetric flow regimes. J. Atmos. Sci. 22, 541–558 (1965)Google Scholar
  93. 8.93
    R. L. Pfeffer, W. W. Fowlis, J. S. Fein, J. Buckley: Experimental determinations of the transitions between the symmetrical and wave regimes in a rotating differentially heated annulus of fluid. Pure Appl. Geophys. (PAGEOPH) 81, 263–271 (1970)Google Scholar
  94. 8.94
    J. A. C. Kaiser: Rotating deep annulus convection. I. Thermal properties of the upper symmetric regime. Tellus 21, 789–804 (1969)Google Scholar
  95. 8.95
    J. A. C. Kaiser: Rotating deep annulus convection. II. Wave instabilities, vertical stratification and associated theories. Tellus 22, 275–287 (1970)Google Scholar
  96. 8.96
    C. B. Ketchum: An experimental study of baroclinic annulus waves at large Taylor number. J. Atmos. Sci. 29, 665–679 (1972)Google Scholar
  97. 8.97
    J. E. Hart: A laboratory study of baroclinic instability. Geophys. Fluid Dyn. 3, 181–210 (1972)Google Scholar
  98. 8.98
    R. Krishnamurti: “Experiments in Ocean Circulation Modelling”; Tech. Rep. 14, Dept. Oceanography, Florida State University (1977)Google Scholar
  99. 8.99
    J. C. King: An experimental study of baroclinic wave interactions in a two-layer system. Geophys. Astrophys. Fluid Dyn. 13, 153–168 (1979)Google Scholar
  100. 8.100
    J. S. Fein, R. L. Pfeffer: An experimental study of the effects of Prandtl number on thermal convection in a rotating differentially heated cylindrical annulus of fluid. J. Fluid Mech. 75, 81–112 (1976)Google Scholar
  101. 8.101
    R. Hide, P. J. Mason, R. A. Plumb: Thermal convection in a rotating fluid subject to a horizontal temperature gradient: spatial and temporal characteristics of fully developed baroclinic waves. J. Atmos. Sci. 34, 930–950 (1977)Google Scholar
  102. 8.102
    R.L.Pfeffer, Y.Chiang: Two kinds of vacillation in rotating laboratory experiments. Mon. Weather Rev. 95, 75–82 (1967)Google Scholar
  103. 8.103
    R. L. Pfeffer, W. W. Fowlis: Wave dispersion in a rotating differentially heated cylindrical annulus of fluid. J. Atmos. Sci. 25, 361–371 (1968)Google Scholar
  104. 8.104
    W. W. Fowlis, R. L. Pfeffer: Characteristics of amplitude vacillation in a rotating differentially heated fluid determined by a multi-probe technique. J. Atmos. Sci. 26, 100–108 (1969)Google Scholar
  105. 8.105
    H. Stommel, A. B. Arons, D. C. Blanchard: An oceanographical curiosity: the perpetual salt fountain. Deep Sea Res. 3, 152–153 (1956)Google Scholar
  106. 8.106
    M. E. Stern, J. S. Turner: Salt fingers and convectiog layers. Deep Sea Res. 16, 497–511 (1969)Google Scholar
  107. 8.107
    P. F. Linden: The formation and destruction of fine structure by double-diffusive processes. Deep Sea Res. 23, 895–908 (1976)Google Scholar
  108. 8.108
    P. F. Linden: The formation of banded salt finger structure. J. Geophys. Res. 83, 2902–2912 (1978)Google Scholar
  109. 8.109
    R. I. Tait, M. R. Howe: Some observations of thermohaline stratification in the deep ocean. Deep Sea Res. 15, 275–280 (1968)Google Scholar
  110. 8.110
    B. Magnell: Salt fingers observed in the Mediterranean outflow using a towed sensor. J. Phys. Oceanogr. 6, 511–523 (1976)Google Scholar
  111. 8.111
    R. W. Schmitt, D. L. Evans: An estimate of the vertical mixing due to salt fingers based on observations in the North Atlantic Central Water. J. Geophys. Res. 83, 2913–2919 (1978)Google Scholar
  112. 8.112
    A. E. Gargett: An investigation of the occurrence of oceanic turbulence with respect to fine structure. J. Phys. Oceanogr. 6, 139–156 (1976)Google Scholar
  113. 8.113
    A. J. Williams: Salt fingers observed in the Mediterranean outflow. Science 185, 941–943 (1974)Google Scholar
  114. 8.114
    H. E. Huppert, J. S. Turner: Double diffusive convection and its implications for the temperature and salinity structure of the ocean and Lake Vanda. J. Phys. Oceanogr. 2,456–461 (1972)Google Scholar
  115. 8.115
    M. E. Stern: The salt fountain and thermohaline convection. Tellus 12, 172–175 (1960)Google Scholar
  116. 8.116
    G. Veronis: A finite amplitude instability in thermohaline convection. J. Mar. Res. 23, 1–17 (1965)Google Scholar
  117. 8.117
    G. Veronis: Effect of a stabilizing gradient of solute on thermal convection. J. Fluid Mech. 34, 315–336 (1968)Google Scholar
  118. 8.118
    P.G.Baines, A.E.Gill: On thermohaline convection with linear gradients. J. Fluid Mech. 37, 289–306 (1969)Google Scholar
  119. 8.119
    T. G. L. Shirtcliffe: Thermosolutal convection: observation of an overstable mode. Nature 213,489–490 (1967)Google Scholar
  120. 8.120
    S. A. Thorpe, P. K. Hutt, R. Soulsby: The effect of horizontal gradients on thermohaline convection. J. Fluid Mech. 28, 375–400 (1969)Google Scholar
  121. 8.121
    H. E. Huppert, J. S. Turner: On melting icebergs. Nature 271, 46–48 (1978)Google Scholar
  122. 8.122
    J. E. Hart: On sideways diffusive instability. J. Fluid Mech. 49, 279–288 (1971)Google Scholar
  123. 8.123
    P. F. Linden, J. E. Weber: The formation of layers in a double-diffusive system with a sloping boundary. J. Fluid Mech. 81, 757–773 (1977)Google Scholar
  124. 8.124
    P. Goldreich, G. Schubert: Differential rotation in stars. Astrophys. J. 150, 571 (1967)Google Scholar
  125. 8.125
    C. A. Jones: The onset of shear instability in stars. Geophys. Astrophys. Fluid Dyn. 8, 165–184 (1977)Google Scholar
  126. 8.126
    M. E. McIntyre: Diffusive destabilization of the baroclinic circular vortex. Geophys. Fluid Dyn. 1, 19–57 (1970)Google Scholar
  127. 8.127
    D.J. Acheson: On the instability of toroidal magnetic fields and differential rotation in stars. Phil. Trans. R. Soc. London A 292, 459–500 (1978)Google Scholar
  128. 8.128
    D. J. Baker: Density gradients in a rotating stratified fluid: experimental evidence for a new instability. Science 172, 1029–1031 (1971)Google Scholar
  129. 8.129
    J. Calman: Experiments on high Richardson number instability of a rotating stratified shear flow. Dyn. Atmos. Ocean. 1, 277–297 (1977)Google Scholar

Copyright information

© Springer-Verlag 1985

Authors and Affiliations

  • D. J. Tritton
  • P. A. Davies

There are no affiliations available

Personalised recommendations