Advertisement

Shear flow instabilities and transition

  • S. A. Maslowe
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 45)

Keywords

Shear Layer Reynolds Stress Couette Flow Parallel Flow Critical Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 7.1
    M. Gaster: “Series representation of the eigenvalues of the Orr-Sommerfeld equation”, AGARD Conference Proceedings No. 224, Laminar-Turbulent Transition (1977) p. 2–1Google Scholar
  2. 7.2
    A. H. Nayfeh: Perturbation Methods (Wiley-Interscience, New York 1973)Google Scholar
  3. 7.3
    J. Kevorkian, J. D. Cole: Perturbation Methods in Applied Mathematics (Springer, Berlin 1981)Google Scholar
  4. 7.4
    C. C. Lin: The Theory of Hydrodynamic Stability (Cambridge University Press 1955)Google Scholar
  5. 7.5
    P. G. Drazin, L. N. Howard: Hydrodynamic stability of parallel flow of inviscid fluid. Adv. Appl. Mech. 9, 1 (1966)Google Scholar
  6. 7.6
    A. E. Gill: A mechanism for instability of plane Couette flow and of Poiseuille flow in a pipe. J. Fluid Mech. 21, 503 (1965)Google Scholar
  7. 7.7
    L. N. Howard: Note on a paper of John W. Miles. J. Fluid Mech. 10, 509 (1961)Google Scholar
  8. 7.8
    T. Tatsumi, K. Gotoh, K. Ayukawa: The stability of a free boundary layer at large Reynolds numbers. J. Phys. Soc. Jpn. 19, 1966 (1964)Google Scholar
  9. 7.9
    G. Carrier, M. Krook, C. Pearson: Functions of a Complex Variable: Theory and Technique (Mc Graw-Hill, New York 1966)Google Scholar
  10. 7.10
    J. T. Stuart: On the role of Reynolds stresses in stability theory. J. Aero. Sci. 23, 86 (1956)Google Scholar
  11. 7.11
    L. Prandtl: “The Mechanics of Viscous Fluids”, in Aerodynamic Theory, Vol. 3, ed. by W. F. Durand (Springer, Berlin 1935) p. 34Google Scholar
  12. 7.12
    J. J. Stoker: Water Waves (Wiley-Interscience, New York 1957)Google Scholar
  13. 7.13
    P. G. Drazin, L. N. Howard: Stability in a continuously stratified fluid. Trans. Am. Soc. Civil Eng. 128, 849 (1963)Google Scholar
  14. 7.14
    S. Leibovich: “Hydrodynamic Stability of Inviscid Rotating Coaxial Jets”; NASA CR-1363 (1969)Google Scholar
  15. 7.15
    W. Blumen, P. G. Drazin, D. F. Billings: Shear layer instability of an inviscid compressible fluid, Part 2. J. Fluid Mech. 71, 305 (1975)Google Scholar
  16. 7.16
    A. Michalke: On spatially growing disturbances in an inviscid shear layer. J. Fluid Mech. 23, 521 (1965)Google Scholar
  17. 7.17
    J. W. Miles, L. N. Howard: Note on a heterogeneous shear flow. J. Fluid Mech. 20, 331 (1964)Google Scholar
  18. 7.18
    W. H. Reid: “The Stability of Parallel Flows”, in Basic Developments in Fluid Dynamics 1, ed. by M. Holt (Academic Press, New York 1965) p. 249Google Scholar
  19. 7.19
    W. P. Graebel: On determination of the characteristic equations for the stability of parallel flows. J. Fluid Mech. 24, 497 (1966)Google Scholar
  20. 7.20
    C. C. Lin, A. L. Rabenstein: On the asymptotic solutions of a class of ordinary differential equations of the fourth order. Trans. Am. Math. Soc. 94, 24 (1960)Google Scholar
  21. 7.21
    W. D. Lakin, B. S. Ng, W. H. Reid: Approximations to the eigenvalue relation for the OrrSommerfeld problem. Phil. Trans. R. Soc. London A 289, 347 (1978)Google Scholar
  22. 7.22
    R. Betchov, W. O. Criminale: Stability of Parallel Flows (Academic Press, New York 1967)Google Scholar
  23. 7.23
    L. H. Thomas: The stability of plane Poiseuille flow. Phys. Rev. 91, 780 (1953)Google Scholar
  24. 7.24
    A. Davey: A simple numerical method for solving Orr-Sommerfeld problems. Q. J. Mech. Appl. Math. 26, 401 (1973)Google Scholar
  25. 7.25
    S. A. Orszag: Accurate solution of the Orr-Sommerfeld stability equation. J. Fluid. Mech. 50, 689 (1971)Google Scholar
  26. 7.26
    S. A. Maslowe: Weakly nonlinear stability of a viscous free shear layer. J. Fluid Mech. 79, 689 (1977)Google Scholar
  27. 7.27
    H. B. Keller: Numerical Methods for Two-Point Boundary-Value Problems (Ginn-Blaisdell, Waltham, Mass. 1968)Google Scholar
  28. 7.28
    M. R. Osborne: Numerical methods for hydrodynamic stability problems. SIAM J. Appl. Math. 15, 539 (1967)Google Scholar
  29. 7.29
    J. Gary, R. Helgason: A matrix method for ordinary differential eigenvalue problems. J. Comp. Phys. 5, 169 (1970)Google Scholar
  30. 7.30
    L.N.Howard, S.A.Maslowe: Stability of stratified shear flows. Boundary-Layer Meteorol. 4, 511 (1973)Google Scholar
  31. 7.31
    C. S. Yih: Fluid Mechanics (McGraw-Hill, New York 1969) Chap. 9, pp. 481–483Google Scholar
  32. 7.32
    A. Eliassen, E. Høiland, E. Riis: “Two-Dimensional Perturbation of a Flow with Constant Shear of a Stratified Fluid”; Inst. for Weather and Climate Res., Pub. No. 1, Oslo (1953)Google Scholar
  33. 7.33
    K.M.Case: Stability of inviscid plane Couette flow. Phys. Fluids 3, 143 (1960)Google Scholar
  34. 7.34
    L. Engevik: “On the Stability of Plane Inviscid Couette Flow”; Rept. No. 12, Dept. Appl. Math., Univ. Bergen (1966)Google Scholar
  35. 7.35
    T. Warn, H. Warn: The evolution of a nonlinear critical level. Stud. Appl. Math. 59, 37 (1978)Google Scholar
  36. 7.36
    G. Chimonas: Algebraic disturbances in stratified shear flows. J. Fluid Mech. 90, 1 (1979)Google Scholar
  37. 7.37
    C. Grosch, H. Salwen: The continuous spectrum of the Orr-Sommerfeld equation. Part 1. The spectrum and the eigenfunctions. J. Fluid Mech. 87, 33 (1978)Google Scholar
  38. 7.38
    J. W. Murdock, K. Stewartson: Spectra of the Orr-Sommerfeld equation. Phys. Fluids 20, 1404 (1977)Google Scholar
  39. 7.39
    C. C. Lin: Some mathematical problems in the theory of the stability of parallel flows. J. Fluid Mech. 10, 430 (1961)Google Scholar
  40. 7.40
    G. B. Whitham: Linear and Nonlinear Waves (Wiley-Interscience, Nw York 1974) pp. 371–374Google Scholar
  41. 7.41
    D. J. Benney, A. C. Newell: The propagation of nonlinear wave envelopes. J. Math. Phys. 46, 133 (1967)Google Scholar
  42. 7.42
    L. A. Segel: Distant side-walls cause slow amplitude modulation of cellular convection. J. Fluid Mech. 38, 203 (1969)Google Scholar
  43. 7.43
    A. C. Newell, J. A. Whitehead: “Review of the Finite Bandwidth Concept”, Proc. IUTAM Symp. Instab. Cont. Syste., 1969 (Springer, Berlin 1971) p. 284Google Scholar
  44. 7.44
    K. Stewartson, J.T. Stuart: A nonlinear instability theory for a wave system in plane Poiseuille flow. J. Fluid Mech. 48, 529 (1971)Google Scholar
  45. 7.45
    D. J. Benney, S. A. Maslowe: The evolution in space and time of nonlinear waves in parallel shear flows. Stud. Appl. Math. 54, 181 (1975)Google Scholar
  46. 7.46
    M. A. Weissman: Nonlinear wave packets in the Kelvin-Helmholtz instability. Phil. Trans. R. Soc. London A 290, 639 (1979)Google Scholar
  47. 7.47
    J. T. Stuart: “Nonlinear Effects in Hydrodynamic Stability”, Proc. Xth Intl. Congr. Appl. Mech. (Elsevier, Amsterdam 1962) p. 63Google Scholar
  48. 7.48
    J. T. Stuart: On the nonlinear mechanics of wave disturbances in stable and unstable parallel flows. I. The basic behaviour in plane Poiseuille flow. J. Fluid Mech. 9, 353 (1960)Google Scholar
  49. 7.49
    P. M. Morse, H. Feshbach: Methods of Theoretical Physics, Vol. 1 (McGraw-Hill, New York 1953) pp. 870–877Google Scholar
  50. 7.50
    W.C.Reynolds, M.C.Potter: Finite-amplitude instability of parallel shear flows. J. Fluid Mech. 27, 465 (1967)Google Scholar
  51. 7.51
    M. Nishioka, S.Iida, Y.Ichikawa: An experimental investigation of the stability of plane Poiseuille flow. J. Fluid Mech. 72, 731 (1975)Google Scholar
  52. 7.52
    H. Schade: Contribution to the nonlinear stability theory of inviscid shear layers. Phys. Fluids 7, 623 (1964)Google Scholar
  53. 7.53
    J. T. Stuart: On finite-amplitude oscillations in laminar mixing layers. J. Fluid Mech. 29, 417 (1967)Google Scholar
  54. 7.54
    P. Huerre: The nonlinear stability of a free shear layer in the viscous critical layer regime. Phil. Trans. R. Soc. London 293, 643 (1980)Google Scholar
  55. 7.55
    N.Itoh: Spatial growth of finite wave disturbances in parallel and nearly parallel flows. Part 2. The numerical results for the flat plate boundary layer. Trans. Jpn. Soc. Aero. Space Sci. 17, 175 (1974)Google Scholar
  56. 7.56a
    A. Davey, H. P. F. Nguyen: Finite-amplitude stability of pipe flow. J. Fluid Mech. 45, 701 (1971)Google Scholar
  57. 7.56b
    A. Davey: On Itoh's finite amplitude stability theory for pipe flow. J. Fluid Mech. 86, 695–704 (1978)Google Scholar
  58. 7.57
    T.Ellingsen, B.Gjevik, E.Palm: On the nonlinear stability of plane Couette flow. J. Fluid Mech. 40, 97 (1970)Google Scholar
  59. 7.58
    J. T. Stuart, R. C. DiPrima: The Eckhaus and Benjamin-Feir resonance mechanisms. Proc. R. Soc. London A 362, 27 (1978)Google Scholar
  60. 7.59
    L. M. Hocking, K. Stewartson: On the nonlinear response of a marginally unstable plane parallel flow to a two-dimensional disturbance. Proc. R. Soc. London A 326, 289 (1972)Google Scholar
  61. 7.60
    C.C.Lin, D.J.Benney: “On the Instability of Shear Flows and Their Transition to Turbulence”, Proc. XIth Intl. Congr. Appl. Mech., ed. by H. Görtler (Springer, Berlin 1964) p. 797Google Scholar
  62. 7.61
    D. J. Benney, R. F. Bergeron: A new class of nonlinear waves in parallel flows. Stud. Appl. Math. 48, 181 (1969)Google Scholar
  63. 7.62
    R. E. Davis: On the high Reynolds number flow over a wavy boundary. J. Fluid Mech. 36, 337 (1969)Google Scholar
  64. 7.63
    S. N. Brown, K. Stewartson: The evolution of the critical layer of a Rossby wave. Part II. Geophys. Astrophys. Fluid Dyn. 10, 1 (1978)Google Scholar
  65. 7.64
    R. Haberman: Critical layers in parallel flows. Stud. Appl. Math. 51, 139 (1972)Google Scholar
  66. 7.65
    S. A. Maslowe: Finite-amplitude Kelvin-Helmholtz billows. Boundary-Layer Meteorol. 5, 43 (1973)Google Scholar
  67. 7.66
    L. G. Redekopp: On the theory of solitary Rossby waves. J. Fluid Mech. 82, 725 (1977)Google Scholar
  68. 7.67
    P. H. Rutherford: Nonlinear growth of the tearing mode. Phys. Fluids 16, 1903 (1973)Google Scholar
  69. 7.68
    R. E. Dickinson: Development of a Rossby wave critical level. J. Atmos. Sci. 27, 627 (1970)Google Scholar
  70. 7.69
    K. Stewartson: The evolution of the critical layer of a Rossby wave. Geophys. Astrophys. Fluid Dyn. 9, 185 (1978)Google Scholar
  71. 7.70
    M.Beland: The evolution of a nonlinear Rossby wave critical level: effects of viscosity. J. Atmos. Sci. 35, 1802 (1978)Google Scholar
  72. 7.71
    R. W. Miksad: Experiments on the nonlinear stages of free shear layer transition. J. Fluid Mech. 56, 695 (1972)Google Scholar
  73. 7.72
    M. Gaster: The role of spatially growing waves in the theory of hydrodynamic stability. Prog. Aeronaut. Sci. 6, 2510 (1965)Google Scholar
  74. 7.73
    A. Michalke: The instability of free shear layers. Prog. Aeronaut. Sci. 12, 213 (1972)Google Scholar
  75. 7.74
    A. Roshko: Structure of turbulent shear flows: a new look. AIAA J. 14, 1349 (1976)Google Scholar
  76. 7.75
    C. D. Winant, F. K. Browand: Vortex pairing: the mechanism of turbulent mixing-layer growth at moderate Reynolds number. J. Fluid Mech. 63, 237 (1974)Google Scholar
  77. 7.76
    R. E. Kelly: On the stability of an inviscid shear layer which is periodic in space and time. J. Fluid Mech. 27, 657 (1967)Google Scholar
  78. 7.77
    R. E. Kelly: On the resonant interaction of neutral disturbances in two inviscid shear flows. J. Fluid Mech. 31, 789 (1968)Google Scholar
  79. 7.78
    D.J.Benney: A nonlinear theory for oscillations in a parallel flow. J. Fluid Mech. 10, 209 (1961)Google Scholar
  80. 7.79
    G. B. Schubauer, H. H. Skramstad: “Laminar Boundary Layer Oscillations and Transition on a Flat Plate”; NACA Tech. Rept. No. 909 (1947)Google Scholar
  81. 7.80
    H. W. Emmons: The laminar-turbulent transition in a boundary layer. J. Aeronaut. Sci. 18, 490 (1951)Google Scholar
  82. 7.81
    P. S. Klebanoff, D. K. Tidstrom, L. M. Sargent: The three-dimensional nature of boundary layer instability. J. Fluid Mech. 12, 1 (1962)Google Scholar
  83. 7.82
    J. T. Stuart: Hydrodynamic stability. Appl. Mech. Rev. 18, 523 (1965)Google Scholar
  84. 7.83
    A. D. D. Craik: Nonlinear resonant instability in boundary layers. J. Fluid Mech. 50, 393 (1971)Google Scholar
  85. 7.84
    H. P. Greenspan, D. J. Benney: On shear layer instability, breakdown and transition. J. Fluid Mech. 15, 133 (1963)Google Scholar
  86. 7.85
    J. T. Stuart: “The Production of Intense Shear Layers by Vortex-Stretching and Convection”; AGARD Rept. 514 (1965)Google Scholar
  87. 7.86
    M. Gaster, I. Grant: An experimental investigation of the formation and development of a wave packet in a laminar boundary layer. Proc. R. Soc. London A 347, 253 (1975)Google Scholar
  88. 7.87
    M.Gaster: The physical processes causing breakdown to turbulence. Twelfth Symp. Naval. Hydro., 1978 (U.S. Office of Naval Res., Washington, D.C.)Google Scholar
  89. 7.88
    D. Arnal, J.-C. Juillen, R. Michel: “Analyse Experimentale et Calcul de l'apparition et du Developpement de la Transition de la Couche Limite”; AGARD Conference Proceedings NO. 224, Laminar-Turbulent Transition (1977) p. 13–1Google Scholar
  90. 7.89
    G. R. Hall: Interaction of the wake from bluff bodies with an initially laminar boundary layer. AIAA J. 5, 1386 (1967)Google Scholar
  91. 7.90
    W. S. Saric, A. H. Nayfeh: Nonparallel stability of boundary-layer flows. Phys. Fluids 18, 945 (1975)Google Scholar
  92. 7.91
    P.Freymuth: On transition in a separated laminar boundary layer. J. Fluid Mech. 25, 683 (1966)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • S. A. Maslowe

There are no affiliations available

Personalised recommendations