Advertisement

Instabilities and transition in flow between concentric rotating cylinders

  • R. C. Di Prima
  • Harry L. Swinney
Chapter
Part of the Topics in Applied Physics book series (TAP, volume 45)

Keywords

Reynolds Number Couette Flow Vortex Flow Amplitude Equation Taylor Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 6.1
    A. Mallock: Determination of the viscosity of water. Proc. R. Soc. London A 45, 126–132 (1888)Google Scholar
  2. 6.2
    A. Mallock: Experiments on fluid viscosity. Philos. Trans. R. Soc. London A187, 41–56 (1896)Google Scholar
  3. 6.3
    M. M. Couette: Études sur le frottement des liquides. Ann. Chim. Phys. 6, Ser. 21, 433–510 (1890)Google Scholar
  4. 6.4
    G. I. Taylor: Stability of a viscous liquid contained between two rotating cylinders. Philos. Trans. R. Soc. London A 223, 289–343 (1923)Google Scholar
  5. 6.5
    E. L. Koschmieder: Turbulent Taylor vortex flow. J. Fluid Mech. 93, 515–527 (1979)Google Scholar
  6. 6.6
    D. Coles: Transition in circular Couette flow. J. Fluid Mech. 21, 385–425 (1965)Google Scholar
  7. 6.7
    P. R. Fenstermacher, H. L. Swinney, J. P. Gollub: Dynamical instabilities and the transition to chaotic Taylor vortex flow. J. Fluid Mech. 94, 103–129 (1979)Google Scholar
  8. 6.8
    J. Serrin: On the stability of viscous fluid motions. Arch. Ration. Mech. Anal. 3, 1–13 (1959)Google Scholar
  9. 6.9
    D. D. Joseph, B. R. Munson: Global stability of spiral flow. J. Fluid Mech. 43, 545–575 (1970)Google Scholar
  10. 6.10
    D. D. Joseph: Stability of Fluid Motions I, Springer Tracts in Natural Philosophy, Vol, 27 (Springer, Berlin, Heidelberg, New York 1976)Google Scholar
  11. 6.11
    W. L. Hung: “Stability of Couette Flow by the Method of Energy”; M. S. Thesis, University of Minnesota (1978)Google Scholar
  12. 6.12
    G.P.Neitzel: Private communication (1978)Google Scholar
  13. 6.13
    D. D. Joseph, W. Hung: Contributions to the nonlinear theory of stability of viscous flow in pipes and between rotating cylinders. Arch. Ration. Mech. Anal. 44, 1–22 (1971)Google Scholar
  14. 6.14
    E. R. Krueger, A. Gross, R. C. Di Prima: On the relative importance of Taylor-vortex and non-axisymmetric modes in flow between rotating cylinders. J. Fluid Mech. 24, 521–538 (1966)Google Scholar
  15. 6.15
    Lord Rayleigh: On the dynamics of revolving fluids. Proc. R. Soc. London A 93, 148–154 (1916)Google Scholar
  16. 6.16
    T. von Kármán: 0ome aspects of the turbulence problem. Proc. 4th Int. Cong. Appl. Mech. (Cambridge, 1934) pp. 54–91Google Scholar
  17. 6.17
    C. C. Lin: The Theory of Hydrodynamic Stability (Cambridge University Press, Cambridge 1955)Google Scholar
  18. 6.18
    J. L. Synge: The stability of heterogeneous liquids. Trans. R. Soc. Canada 27, 1–18 (1933)Google Scholar
  19. 6.19
    J. L. Synge: On the stability of a viscous liquid between two rotating coaxial cylinders. Proc. R. Soc. London A 167, 250–256 (1938)Google Scholar
  20. 6.20
    F. Schultz-Grunow: Zur Stabilität der Couette Strömung. Z. Angew. Math. Mech. 39, 101–110 (1959)Google Scholar
  21. 6.21
    F.Schultz-Grunow: On the stability of Couette flow. NATO Advisory Group for Aeronautical Research and Development, Report 265 (1960)Google Scholar
  22. 6.22
    F. Schultz-Grunow: Stabilität einer rotierenden Flüssigkeit. Z. Angew. Math. Mech. 43, 411–415 (1963)Google Scholar
  23. 6.23
    R. C. Di Prima, R. N. Grannick: “A Non-linear Investigation of the Stability of Flow Between Counter-rotating Cylinders”, in Instability of Continuous Systems, ed. by H. Leipholz (Springer, Berlin, Heidelberg, New York 1971) pp. 55–60Google Scholar
  24. 6.24
    A. Davey. The growth of Taylor vortices in flow between rotating cylinders, J. Fluid Mech. 14, 336–368 (1962)Google Scholar
  25. 6.25
    J. T. Stuart: On the non-linear mechanics of wave disturbances in stable and unstable parallel flows. Part 1, The basic behaviour in plane Poiseuille flow. J. Fluid Mech. 9, 353–370 (1960)Google Scholar
  26. 6.26
    J. Watson: On the non-linear mechanics of wave disturbances in stable and unstable parallel flows. Part 2. The development of a solution for plane Poiseuille flow and for plane Couette flow. J. Fluid Mech. 9, 371–389 (1960)Google Scholar
  27. 6.27
    A. Davey, R. C. Di Prima, J. T. Stuart: On the instability of Taylor vortices. J. Fluid Mech. 31, 17–52 (1968)Google Scholar
  28. 6.28
    J. P. Gollub, H. L. Swinney: Onset of turbulence in a rotating fluid. Phys. Rev. Lett. 35, 927–930 (1975)Google Scholar
  29. 6.29
    R. W. Walden, R. J. Donnelly: Reemergent order of chaotic circular Couette flow. Phys. Rev. Lett. 42, 301–304 (1979)Google Scholar
  30. 6.30
    S. Chandrasekhar: Hxdrodynamic and Hydromagnetic Stability (Oxford University Press, Oxford 1961) p. 303Google Scholar
  31. 6.31
    C. S. Yih: Spectral theory of Taylor vortices. Part II: Proof of nonoscillation. Arch. Ration. Mech. Anal. 47, 288–300 (1972)Google Scholar
  32. 6.32
    K. N. Astill, K. C. Chung: A numerical study of instability of the flow between rotating cylinders. Am. Soc. Mech. Eng. Pub. 76-FE-27 (1976)Google Scholar
  33. 6.33
    K. Chung: “Stability Study of a Viscous Flow Between Rotating Coaxial Cylinders”; Ph.D. Thesis, Tufts University (1976)Google Scholar
  34. 6.34
    E. M. Sparrow, W. D. Munro, V. K. Jonsson: Instability of the flow between rotating cylinders: the wide gap problem. J. Fluid Mech. 20, 35–46 (1974)Google Scholar
  35. 6.35
    J. Walowit, S. Tsao, R. C. Di Prima: Stability of flow between arbitrarily spaced concentric cylindrical surfaces including the effect of a radial temperature gradient. Trans. Am. Soc. Mech. Eng., J. Appl. Mech. 31, 585–593 (1964)Google Scholar
  36. 6.36
    P. H. Roberts: The solution of the characteristic value problems, (Appendix to [6.65]). Proc. R. Soc. London A 283, 550–556 (1965)Google Scholar
  37. 6.37
    R. C. Di Prima, G.J. Habetler: A completeness theorem for non-selfadjoint eigenvalue problems in hydrodynamic stability. Arch. Ration. Mech. Anal. 34, 218–227 (1969)Google Scholar
  38. 6.38
    R. C. Di Prima: Application of the Galerkin method to the calculation of the stability of curved flows. Quart. Appl. Math. 13, 55–62 (1955)Google Scholar
  39. 6.39
    D. L. Harris, W. H. Reid: On the stability of viscous flow between rotating cylinders. Part 2. Numerical analysis. J. Fluid Mech. 20, 95–101 (1964)Google Scholar
  40. 6.40
    R. L. Duty, W. H. Reid: On the stability of viscous flow between rotating cylinders. Part 1. Asymptotic analysis. J. Fluid Mech. 20, 81–94 (1964)Google Scholar
  41. 6.41
    D. Coles: A note on Taylor instability in circular Couette flow. Trans. Am. Soc. Mech. Eng. J. Appl. Mech. 89, 527–534 (1967)Google Scholar
  42. 6.42
    S. Kogelman, R. C. Di Prima: Stability of spatially periodic supercritical flows in hydrodynamics. Phys. Fluids 13, 1–11 (1970)Google Scholar
  43. 6.43
    W. Eckhaus: Problémes non liénaires dans las theorie de la stability. J. Mécanique 1, 49–77 (1962)Google Scholar
  44. 6.44
    W. Eckhaus: Problémes non linéaires de stabilité dans un espace á deux dimensions. Premiere partie: Solutions périodiques. J. Mécanique 1, 413–438 (1962)Google Scholar
  45. 6.45
    W. Eckhaus: Studies in Non-Linear Stability Theory, Springer Tracts in Natural Philosophy, Vol. 6 (Springer, Berlin, Heidelberg, New York 1965)Google Scholar
  46. 6.46
    R. C. Di Prima: “Vector Eigenfunction Expansions for the Growth of Taylor Vortices in the Flow Between Rotating Cylinders”, in Nonlinear Partial Differential Equations, ed. by W. F. Ames (Academic Press, New York 1967) pp. 19–42Google Scholar
  47. 6.47
    W. Velte: Stabilität und Verzweigung stationärer Lösungen der Navier-Stokesschen Gleichungen beim Taylor-Problem. Arch. Ration. Mech. Anal. 22, 1–14 (1966)Google Scholar
  48. 6.48
    K. Kirchgässner, P. Sorger: Branching analysis for the Taylor problem. Quart. J. Mech. Appl. Math. 22, 183–190 (1969)Google Scholar
  49. 6.49
    V. I. Yudovich: Secondary flows and fluid instability between rotating cylinders. J. Appl. Math. Mech. 30, 822–833 (1966)Google Scholar
  50. 6.50
    V. I. Yudovich: The bifurcation of a rotating flow of a liquid. Sov. Phys. Dokl. 11, 566–568 (1966)Google Scholar
  51. 6.51
    I. P. Ivanilov, G. N. Iakovlev: The bifurcation of fluid flow between rotating cylinders. J. Appl. Math. Mech. 30, 910–916 (1966)Google Scholar
  52. 6.52
    K. Kirchgässner, P. Sorger: “Stability Analysis of Branching Solutions of the Navier-Stokes Equations”, in Proceedings of the Twelfth International Congress of Applied Mechanics, 1968, ed. by M. Hetényi, W. G. Vincenti (Springer, Berlin, Heidelberg, New York 1969)Google Scholar
  53. 6.53
    S. N. Ovchinnikova, V. I. Yudovich: Stability and bifurcation of Couette flow in the case of a narrow gap between rotating cylinders. J. Appl. Math. Mech. 34, 1025–1030 (1974)Google Scholar
  54. 6.54
    R. C. Di Prima, P. M. Eagles: Amplification rates and torques for Taylor-vortex flows between rotating cylinders. Phys. Fluids 20, 171–175 (1977)Google Scholar
  55. 6.55
    W. C. Reynolds, M. C. Potter: A finite amplitude state-selection theory for Taylor-vortex flow. Unpublished report, Dept. Mech. Eng. Stanford Univ. (1967); also see Bull. Am. Phys. Soc. 12, 834 (1967)Google Scholar
  56. 6.55a
    J. T. Stuart: In Annual Reviews of Fluid Mechanics, Vol. 3, (Annual Reviews, Palo Alto, CA, 1971) pp. 347–370Google Scholar
  57. 6.56
    P. M. Eagles, J. T. Stuart, R. C. Di Prima: The effects of eccentricity on torque and load in Taylor-vortex flow. J. Fluid Mech. 87, 209–231 (1978)Google Scholar
  58. 6.57
    W. Eckhaus: Problemes non-linéaries de stabilité dans un espace á deux dimensions. Deuxieme partie: Stabilité des solutions périodiques. J. Mécanique 2, 153–172 (1963)Google Scholar
  59. 6.58
    C. Nakaya: Domain of stable periodic vortex flows in a viscous fluid between concentric circular cylinders. J. Phys. Soc. Jpn. 36, 1164–1173 (1974)Google Scholar
  60. 6.59
    H. A. Snyder: Wavenumber selection at finite amplitude in rotating Couette flow. J. Fluid Mech. 35, 273–298 (1969)Google Scholar
  61. 6.60
    H. A. Snyder: Change in waveform and mean flow associated with wavelength variations in rotating Couette flow. Part 1. J. Fluid Mech. 35, 337–352 (1969)Google Scholar
  62. 6.61
    J. E. Burkhalter, E. L. Koschmieder: Steady supercritical Taylor vortices after sudden starts. Phys. Fluids 17, 1929–1935 (1974)Google Scholar
  63. 6.62
    E. L. Koschmieder: Stability of supercritical Bénard convection and Taylor vortex flow. Adv. Chem. Phys. 32, 109–133 (1975)Google Scholar
  64. 6.63
    J. T. Stuart, R. C. Di Prima: The Eckhaus and Benjamin-Feir resonance mechanisms. Proc. R. Soc. London A 362, 27–41 (1978)Google Scholar
  65. 6.64
    T. B. Benjamin, J. E. Feir: The disintegration of wave trains on deep water. Part 1. Theory. J. Fluid Mech. 27, 417–430 (1967)Google Scholar
  66. 6.65
    R. J. Donnelly, K. W. Schwarz: Experiments on the stability of viscous flow between rotating cylinders. VI. Finite-amplitude experiments. Proc. R. Soc. London A 283, 531–546 (1965)Google Scholar
  67. 6.66
    H. A. Snyder, R. B. Lambert: Harmonic generation in Taylor vortices between rotating cylinders. J. Fluid Mech. 26, 545–562 (1966)Google Scholar
  68. 6.67
    J. P. Gollub, M. H. Freilich: Optical heterodyne test of perturbation expansions for the Taylor instability. Phys. Fluids 19, 618–626 (1976)Google Scholar
  69. 6.68
    W. Debler, E. Füner, B. Schaaf: “Torque and Flow Patterns in Supercritical Circular Couette Flow”, in Proceedings of the Twelf th International Congress of Applied Mechanics, 1968, ed. by M. Hetényi, W. G. Vincenti (Springer, Berlin, Heidelberg, New York 1969)Google Scholar
  70. 6.69
    J. A. Cole: Taylor-vortex instability and annulus-length effects. J. Fluid Mech. 75, 1–15 (1976)Google Scholar
  71. 6.70
    R. W. Walden: “Transition to Turbulence in Couette Flow Between Concentric Cylinders”; Ph.D. Thesis, University of Oregon (1978)Google Scholar
  72. 6.71
    K. W. Schwarz, B. E. Springett, R.J. Donnelly: Modes of instability in spiral flow between rotating cylinders. J. Fluid Mech. 20, 281–289 (1964)Google Scholar
  73. 6.72
    P. Castle, F. R. Mobbs: Hydrodynamic stability of the flow between eccentric rotating cylinders: visual observations and torque measurements. Proc. Inst. Mech. Eng. (London) 182, 41–52 (1967-68)Google Scholar
  74. 6.73
    P. Castle, F. R. Mobbs, P. H. Markho: Visual observations and torque measurements in the Taylor vortex regime between eccentric rotating cylinders. J. Lub. Tech., Trans. Am. Soc. Mech. Eng. 93, 121–129 (1971)Google Scholar
  75. 6.74
    P. H. Markho, C. D. Jones, F. R. Mobbs: Wavy modes of instability in the flow between eccentric rotating cylinders. J. Mech. Eng. Sci. 19, 76–80 (1977)Google Scholar
  76. 6.75
    F. R. Mobbs, S. Preston, M. S. Ozogan: An experimental investigation of Taylor vortex waves. Taylor Vortex Flow Working Party, Leeds (1979)Google Scholar
  77. 6.76
    R. C. Di Prima: Stability of nonrotationally symmetric disturbances for viscous flow between rotating cylinders. Phys. Fluids 4, 751–755 (1961)Google Scholar
  78. 6.77
    P. M. Eagles: On stability of Taylor vortices by fifth-order amplitude expansions. J. Fluid Mech. 49, 529–550 (1971)Google Scholar
  79. 6.78
    C. Nakaya: The second stability boundary for circular Couette flow. J. Phys. Soc. Jpn. 38, 576–585 (1975)Google Scholar
  80. 6.79
    P. M. Eagles: On the torque of wavy vortices. J. Fluid Mech. 62, 1–9 (1974)Google Scholar
  81. 6.80
    R. J. Donnelly: Experiments on the stability of viscous flow between rotating cylinders. I. Torque measurements. Proc. R. Soc. London A 246, 312–325 (1958)Google Scholar
  82. 6.81
    R. J. Donnelly, N. J. Simon: An empirical torque relation for supercritical flow between rotating cylinders. J. Fluid Mech. 7, 401–418 (1960)Google Scholar
  83. 6.82
    H. A. Snyder: Stability of rotating Couette flow. II. Comparison with numerical results. Phys. Fluids 11, 1599–1605 (1968)Google Scholar
  84. 6.83
    F. Schultz-Grunow, H. Hein: Beitrag zur Couetteströmung. Z. Flugwiss. 4, 28–30 (1956)Google Scholar
  85. 6.84
    J. W. Lewis: An experimental study of the motion of a viscous liquid contained between coaxial cylinders. Proc. R. Soc. London A 117, 388–407 (1928)Google Scholar
  86. 6.85
    A. Townsend: Private communication (1979)Google Scholar
  87. 6.86
    S.I.Pai: Turbulent flow between rotating cylinders. National Advisory Committee for Aeronautics Technical Note No. 892 (1943)Google Scholar
  88. 6.87
    J. E. Burkhalter, E. L. Koschmieder: Steady supercritical Taylor vortex flow. J. Fluid Mech. 58, 547–560 (1973)Google Scholar
  89. 6.88
    T. B. Benjamin: Bifurcation phenomena in steady flow of a viscous fluid. I. Theory. Proc. R. Soc. London A359, 1–26 (1978)Google Scholar
  90. 6.89
    T. B. Benjamin: Bifurcation phenomena in steady flows of a viscous fluid. II. Experiments. Proc. R. Soc. London A 359, 27–43 (1978)Google Scholar
  91. 6.90
    H. L. Swinney, P. R. Fenstermacher, J. P. Gollub: Transition to turbulence in circular Couette flow, Turbulent Shear Flow Symposium (Pennsylvania State Univ., 1977) pp. 17.1–17.6Google Scholar
  92. 6.91
    G. Cognet: Utilixation de la polargraphie pour l'étude de l'écoulement de Couette. J. Mécanique 10, 65–90 (1971)Google Scholar
  93. 6.92
    A. Bouabdallah, G. Cognet: “Laminar-turbulent transition in Taylor-Couette flow”, in Laminar-Turbulent Transition, ed. by R. Eppler and H. Fasel (Springer, Berlin, Heidelberg, New York 1980) pp. 368–377Google Scholar
  94. 6.93
    A. Barcilon, J. Brindley, M. Leesen, F. R. Mobbs: Marginal instability in Taylor-Couette flows at very high Taylor number. J. Fluid Mech. 94, 453–463 (1979)Google Scholar
  95. 6.94
    H. A. Snyder: Waveforms in rotating Couette flow. Int. J. Non-Linear Mech. 5, 659–685 (1970)Google Scholar
  96. 6.95
    R. K. Otnes, L. Enochson: Applied Time Series Analysis (John Wiley, New York 1978)Google Scholar
  97. 6.96
    G. Ahlers: Low temperature studies of the Rayleigh-Bénard instability and turbulence. Phys. Rev. Lett. 33, 1185–1188 (1974)Google Scholar
  98. 6.97
    P. R. Fenstermacher: “Laser Doppler Velocimetry Study of the Onset of Chaos in Taylor Vortex Flow”; Ph.D. Thesis, City College of the City University of New York (1979)Google Scholar
  99. 6.98
    T. S. Durrani, C. A. Greated: Laser Systems in Flow Measurement (Plenum, New York 1977)Google Scholar
  100. 6.99
    F. Durst, A. Melling, J. H.Whitelaw: Principles and Practice of Laser-Doppler Anemometry (Academic Press, London 1976)Google Scholar
  101. 6.100
    M. A. Gorman, H. L. Swinney: Visual observation of a second characteristic mode in wavy vortex flow. Phys. Rev. Lett. 43, 1871–1875 (1979)Google Scholar
  102. 6.101
    A. Roshko: Structure of turbulent shear flows: a new look. Am. Inst. Aero. Astron. J. 14, 1349–1357 (1976)Google Scholar
  103. 6.102
    L. P. Reiss, T. J. Hanratty: Measurement of instantaneous rates of mass transfer to a small sink on a wall. Am. Inst. Chem. Eng. J. 8, 245–247 (1962)Google Scholar
  104. 6.103
    Z. B. Krugljak, E. A. Kuznetsov, V. S. L'vov, Yu. E. Nesterikhin, A. A. Predtechensky, V. S. Sobolev, E. N. Utkin, F. A. Zhuravel: “Laminar-turbulent transition in circular Couette flow”, in Laminar-Turbulent Transition, ed. by R. Eppler and H. Fasel (Springer, Berlin, Heidelberg, New York 1980), pp. 378–387Google Scholar
  105. 6.104
    E. A. Kuznetsov, V. S. L'vov, A. A. Predtechenskii, V. S. Sobolev, E. N. Utkin, JETP Lett. 30, 207–210 (1979)Google Scholar
  106. 6.105
    E. N. Lorenz: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)Google Scholar
  107. 6.106
    J. Sherman, J. B. McLaughlin: Power spectra of nonlinearly coupled waves. Commun. Math. Phys. 58, 9–17 (1978)Google Scholar
  108. 6.107
    H. L. Swinney, P. R. Fenstermacher, J. P. Gollub: “Transition to Turbulence in a Fluid Flow”, in Synergetics, a Workshop, ed. by H. Haken (Springer, Berlin, Heidelberg, New York 1977) pp. 60–69Google Scholar
  109. 6.108
    H. Yahata: Temporal development of the Taylor vortices in a rotating fluid. Prog. Theor. Phys. Suppl. 64, 176–185 (1978)Google Scholar
  110. 6.109
    H. Yahata: Temporal development of the Taylor vortices in a rotating fluid II. Prog. Theor. Phys. 61, 791–800 (1979)Google Scholar
  111. 6.110
    D. Ruelle: Sensitive dependence on initial condition and turbulent behavior of dynamical systems. Ann. N.Y. Acad. Sci. 316, 408–416 (1979)Google Scholar
  112. 6.111
    J. A. Cole: Taylor vortices with short rotating cylinders. J. Fluids Eng. 96, 69–70 (1974)Google Scholar
  113. 6.112
    J. A. Cole: Taylor vortex behavior in annular clearances of limited length. Proc. of the Fifth Australasian Conf. on Hydraulics and Fluid Mechanics, pp. 514–521 (1974)Google Scholar
  114. 6.113
    P. A. Jackson, B. Robati, F. R. Mobbs: “Secondary Flows Between Eccentric Rotating Cylinders at Subcritical Taylor Numbers“, in Superlaminar Flow in Bearings, Proc. of the Second Leeds-Lyon Symposium on Tribology (Institute of Mechanical Engineers, London 1975) pp. 9–14Google Scholar
  115. 6.114
    J. T. Stuart: “Bifurcation Theory in Non-linear Hydrodynamic Stability”, in Applications of Bifurcation Theory, ed. by P. H. Rabinowitz (Academic Press, New York 1977) pp. 127–147Google Scholar
  116. 6.115
    T. Alziary de Roquefort, G. Grillaud: Computation of Taylor vortex flow by a transient implicit method. Comput. Fluids 6, 259–269 (1978)Google Scholar
  117. 6.116
    P. J. Blennerhasset, P. Hall: Centrifugal instabilities of circumferential flow in finite cylinders linear theory. Proc. R. Soc. London A365, 191–207 (1979)Google Scholar
  118. 6.117
    P. Hall: Centrifugal instabilities of circumferential flows in finite cylinders: nonlinear theory. Proc. R. Soc. London A372, 317–356 (1980)Google Scholar
  119. 6.118
    J. T. Stuart, R. C. Di Prima: On the mathematics of Taylor-vortex flows in cylinders of finite length. Proc. R. Soc. London A372, 357–365 (1980)Google Scholar
  120. 6.119
    D. G. Schaeffer: Qualitative analysis of a model for boundary effects in the Taylor problem. Math. Proc. Camb. Philos. Soc. 87, 307–337 (1980)Google Scholar
  121. 6.120
    P. Hall, I. C. Walton: The smooth transition to a convective regime in a two dimensional box. Proc. R. Soc. London A358, 199–221 (1977)Google Scholar
  122. 6.121
    P. G. Daniels: The effect of distant side walls on the transition to smite amplitude Bénard convection. Proc. R. Soc. London A 358, 173–197 (1977)Google Scholar
  123. 6.122
    P. Hall: Centrifugal instabilities in finite containers: a periodic model. J. Fluid Mech. 99, 575–596 (1980)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • R. C. Di Prima
  • Harry L. Swinney

There are no affiliations available

Personalised recommendations