Transition to turbulence in Rayleigh-Beénard convection

  • F. H. Busse
Part of the Topics in Applied Physics book series (TAP, volume 45)


Nusselt Number Prandtl Number Rayleigh Number Heat Transport Thermal Convection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 5.1
    J. P. Gollub, H. L. Swinney: Onset of turbulence in a rotating fluid. Phys. Rev. Lett. 35, 927–930 (1975)Google Scholar
  2. 5.2
    G. E. Willis, J. W. Deardorff: The oscillatory motions of Rayleigh convection. J. Fluid Mech. 44, 661–672 (1970)Google Scholar
  3. 5.3
    G. Ahlers: Low temperature studies of the Rayleigh-Bénard instability and turbulence. Phys. Rev. Lett. 33, 1185–1188 (1974)Google Scholar
  4. 5.4
    G. Ahlers, R. P. Behringer: Evolution of turbulence from the Rayleigh-Bénard instability. Phys. Rev. Lett. 40, 712–716 (1978)Google Scholar
  5. 5.5
    J. P. Gollub, S. V. Benson: Many routes to turbulent convection. J. Fluid Mech. 100, 449–470 (1980)Google Scholar
  6. 5.6
    P. C. Martin: “The Onset of Turbulence: A Review of Recent Developments in Theory and Experiment”, in Proc. Int. Conf. Stat. Mech., ed. by L. Pàl and P. Szepfalusy (North-Holland, Amsterdam 1975)Google Scholar
  7. 5.7
    D. Ruelle, F. Takens: On the nature of turbulence. Commun. Math. Phys. 20, 167 (1971)Google Scholar
  8. 5.8
    F. H. Busse, R. M. Clever: “Nonstationary Convection in a Rotating System”, in “Recent Developments in Theoretical and Experimental Fluid Mechanics”, ed. by U. Müller, K. G. Roesner, B. Schmidt (Springer, Berlin, Heidelberg, New York 1979) pp. 376–385Google Scholar
  9. 5.9
    S. Chandrasekhar: Hydrodynamic and Hydromagnetic Stability (Clarendon Press, Oxford 1961)Google Scholar
  10. 5.10
    G. Z. Gershuni, E. M. Zhukovitskii: Convection Stability of Incompressible Fluids, transl. from the Russian by D. Louvish (Keter Publications, Jerusalem 1976)Google Scholar
  11. 5.11
    E. A. Spiegel: Convection in stars: I. Basic Boussinesq convection. An.. Rev. Astron. Astrophys. 9, 323–352 (1971)Google Scholar
  12. 5.12
    E. A. Spiegel: Convection in stars: II. Special effects. Ann. Rev. Astron. Astrophys. 10, 261–304 (1972)Google Scholar
  13. 5.13
    E. L. Koschmieder: Bénard convection. Adv. Chem. Phys. 26, 177–212 (1974)Google Scholar
  14. 5.14
    E. Palm: Nonlinear thermal convection. Ann. Rev. Fluid Mech. 7, 39–61 (1975)Google Scholar
  15. 5.15
    C. Normand, Y. Pomeau, M. G. Velarde: Convection instability: A physicist's approach. Rev. Mod. Phys. 49, 581–624 (1977)Google Scholar
  16. 5.16
    F. H. Busse: Nonlinear properties of convection. Rep. Prog. Phys. 41, 1929–1967 (1978)Google Scholar
  17. 5.17
    J. S. Turner: Buoyancy Effects in Fluids (Cambridge University Press, London 1973)Google Scholar
  18. 5.18
    D.D. Joseph: Stability of Fluid Motions, Springer Tracts in Natural Philosophy, Vols. 27, 28 (Springer, Berlin, Heidelberg, New York 1976)Google Scholar
  19. 5.19
    E. A. Spiegel, G. Veronis: On the Boussinesq approximation for a compressible fluid. Astrophys. J. 131, 442–447 (1960)Google Scholar
  20. 5.20
    J. M. Mihaljan: A rigorous exposition of the Boussinesq approximation applicable to a thin fluid layer. Astrophys. J. 136, 1126–1133 (1962)Google Scholar
  21. 5.21
    W. V. R. Malkus: Boussinesq equations. Woods Hole Oceanographic Inst. Rep. 64-46 (1964) pp. 1–12Google Scholar
  22. 5.22
    O. D. Gray, A. Giorgini: The validity of the Boussinesq approximation for liquids and gases. Int. J. Heat Mass Transfer 19, 545–551 (1976)Google Scholar
  23. 5.23
    V. S. Sorokin: Variational method in the theory of convection. Prikl. Mat. Mekh. 17, 39 (1953)Google Scholar
  24. 5.24
    Lord Rayleigh: On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Philos. Mag. 32, 529–546 (1916)Google Scholar
  25. 5.25
    A. Pellew, R. V. Southwell: On maintained convective motion in a fluid heated from below. Proc. R. Soc. (London) A 176, 312–343 (1940)Google Scholar
  26. 5.26
    W. H. Reid, D. L. Harris: Some further results on the Bénnard problem. Phys. Fluids 1, 102–110 (1958)Google Scholar
  27. 5.27
    E.M. Sparrow, R.J. Goldstein, V.H. Jonsson: Thermal instability in a horizontal fluid layer: effect of boundary conditions and non-linear temperature profile. J. Fluid Mech. 18, 513–528 (1964)Google Scholar
  28. 5.28
    E. Jakeman: Convective instability in fluids of high thermal diffusivity. Phys. Fluids 11, 10–14 (1968)Google Scholar
  29. 5.29
    L.P. Gorkov: Stationary convection in a plane liquid layer near the critical heat transfer point. Zh. Eksp. Teor. Fiz. [English transl.: Sov. Phys.-JETP) 6, 311–315 (1957)Google Scholar
  30. 5.30
    V. W. R. Malkus, G. Veronis: Finite amplitude convection. J. Fluid Mech. 4, 225–260 (1958)Google Scholar
  31. 5.31
    A. Schlüter, D. Lortz, F. Busse: On the stability of steady finite amplitude convection. J. Fluid Mech. 23, 129–144 (1965)Google Scholar
  32. 5.32
    V. I. Yudovich: On the origin of convection. J. Appl. Math. Mech. 30, 1193 (1966)Google Scholar
  33. 5.33
    D.H. Rabinowitz: Existence and nonuniqueness of rectangular solutions of the Bénard problem. Arch. Ration. Mech. Anal. 29, 32 (1968)Google Scholar
  34. 5.34
    F. H. Busse: “Stability Regions of Cellular Fluid Flow”, in Instability of Continuous Systems, ed. by H. Leipholz (Springer, Berlin, Heidelberg, New York 1971) pp. 41–47Google Scholar
  35. 5.35
    A. C. Newell, C. G. Lange, P.J. Aucoin: Random convection. J. Fluid Mech. 40, 513–542 (1970)Google Scholar
  36. 5.36
    D. R. Moore, N.O. Weiss: Nonlinear penetrative convection. J. Fluid Mech. 58, 289–312 (1973)Google Scholar
  37. 5.37
    J. E. Fromm: Numerical solutions of the nonlinear equations for a heated fluid layer. Phys. Fluids 8, 1757–1769 (1965)Google Scholar
  38. 5.38
    R. M. Clever, F. H. Busse: Transition to time dependent convection. J. Fluid Mech. 65, 625–645 (1974)Google Scholar
  39. 5.39
    H. T. Rossby: A study of Bénard convection with and without rotation. J. Fluid Mech. 36, 309–335 (1969)Google Scholar
  40. 5.40
    C. A. Jones, D. R. Moore, N. O. Weiss: Axisymmetric convection in a cylinder. J. Fluid Mech. 73, 353 (1976)Google Scholar
  41. 5.41
    M. R. E. Proctor: Inertial convection at low Prandtl number. J. Fluid Mech. 82, 97–114 (1977)Google Scholar
  42. 5.42
    W. V. R. Malkus: The heat transport and spectrum of thermal turbulence. Proc. R. Soc. (London) A 225, 196–212 (1954)Google Scholar
  43. 5.43
    F. H. Busse: The stability of finite amplitude cellular convection and its relation to an extremum principle. J. Fluid Mech. 30, 625–649 (1967)Google Scholar
  44. 5.44
    W. H. Plows: “Numerical Studies of Laminar, Free Convection in a Horizontal Fluid Layer Heated from Below”, Ph.D. Thesis, University of California, Berkeley (1971)Google Scholar
  45. 5.45
    F. H. Busse: On the stability of two-dimensional convection in a layer heated from below. J. Math. Phys. 46, 149–150 (1967)Google Scholar
  46. 5.46
    J. M. Straus: Finite amplitude doubly diffusive convection. J. Fluid Mech. 56, 353–374 (1972)Google Scholar
  47. 5.47
    J. W. Deardorff: Gravitational instability between horizontal plates with shear. Phys. Fluids 8, 1027–1030 (1965)Google Scholar
  48. 5.48
    A. P. Gallagher, A. McD. Mercer: On the behavior of small disturbances in plane Couette flow with a temperature gradient. Proc. R. Soc. (London) A 286, 117–128 (1965)Google Scholar
  49. 5.49
    F. B. Lipps: Numerical simulation of three-dimensional Bénard convection in air. J. Fluid Mech. 75, 113–148 (1976)Google Scholar
  50. 5.50
    R. H. Kraichnan: Turbulent thermal convection of arbitrary Prandtl number. Phys. Fluids 5, 1374–1389 (1962)Google Scholar
  51. 5.51
    L. N. Howard: Heat transport by turbulent convection. J. Fluid Mech. 17, 405–432 (1963)Google Scholar
  52. 5.52
    F. H. Busse: Bounds on the transport of mass and momentum by turbulent flow between parallel plates. J. Appl. Math. Phys. (ZAMP) 20, 1–14 (1969)Google Scholar
  53. 5.53
    F. H. Busse: Bounds for turbulent shear flow: J. Fluid Mech. 41, 219–240 (1970)Google Scholar
  54. 5.54
    F. H. Busse: The optimum theory of turbulence. Adv. Appl. Mech. 18, 77–121 (1978)Google Scholar
  55. 5.55
    F. H. Busse: On Howard's upper bound for heat transport by turbulent convection. J. Fluid Mech. 37, 457–477 (1969)Google Scholar
  56. 5.56
    J. M. Strauss: On the upper bounding approach to thermal convection of moderate Rayleigh numbers, II. Rigid boundaries. Dyn. Atmos. Oceans 1, 77–90 (1976)Google Scholar
  57. 5.57
    S.-K. Chan: Infinite Prandtl number turbulent convection. Stud. Appl. Math. 50, 13–49 (1971)Google Scholar
  58. 5.58
    H. Bénard: Les tourbillons cellulaires dans une nappe liquide transportant de la chaleur par convection en régime permanent. Ann. Chim. Phys. 7, Ser. 23, 62 (1901)Google Scholar
  59. 5.59
    J. R. A. Pearson: On convection cells induced by surface tension. J. Fluid Mech. 4, 489–500 (1958)Google Scholar
  60. 5.60
    M. J. Block: Surface tension as the cause of Bénard cells and surface deformation in a liquid film. Nature 178, 650–651 (1956)Google Scholar
  61. 5.61
    R. J. Schmidt, S. W. Milverton: On the instability of a fluid when heated from below. Proc. R. Soc. (London) A 152, 586–594 (1935)Google Scholar
  62. 5.62
    P. L. Silveston: Wärmedurchgang in waagerechten Flüssigkeitsschichten. Forsch. Ingenieurwes. 24, 29–32, 59–69 (1958)Google Scholar
  63. 5.63
    S. H. Davis, L. A. Segel: Effects of surface curvature and property variation on cellular convection. Phys. Fluids 11, 470–476 (1968)Google Scholar
  64. 5.64
    H. Tippelskirch: Über Konvektionszellen, insbesondere in flüssigem Schwefel. Beitr. Phys. Atmos. 29, 37–54 (1956)Google Scholar
  65. 5.65
    E. Palm: On the tendency towards hexagonal cells in steady convection. J. Fluid Mech. 8, 183–192 (1960)Google Scholar
  66. 5.66
    L. A. Segel, J. T. Stuart: On the question of the preferred mode in cellular thermal convection. J. Fluid Mech. 13, 289–306 (1962)Google Scholar
  67. 5.67
    R. J. Goldstein, D. J. Graham: Stability of a horizontal fluid layer with zero shear boundaries. Phys. Fluids 12, 1133–1137 (1969)Google Scholar
  68. 5.68
    G. E. Willis, J. W. Deardorff, R. C. Somerville: Roll-diameter dependence in Rayleigh convection and its effect upon the heat flux. J. Fluid Mech. 54, 351–367 (1972)Google Scholar
  69. 5.69
    F. H. Busse, J. A. Whitehead: Instabilities of convection rolls in a high Prandtl number fluid. J. Fluid Mech. 47, 305–320 (1971)Google Scholar
  70. 5.70
    F. H. Busse, J. A. Whitehead: Oscillatory and collective instabilities in large Prandtl number convection. J. Fluid Mech. 66, 67–79 (1974)Google Scholar
  71. 5.71
    E. L. Koschmieder: On convection on a uniformly heated plane. Beitr. Phys. Atmos. 39, 1–11 (1966)Google Scholar
  72. 5.72
    K. Stork, U. Müller: Convection in boxes: experiments. J. Fluid Mech. 54, 599–611 (1972)Google Scholar
  73. 5.73
    S. H. Davis: Convection in a box: linear theory. J. Fluid Mech. 30, 465–478 (1967)Google Scholar
  74. 5.74
    R. Farhadieh, R. S. Tankin: Interferometric study of two-dimensional Bénard convection cells. J. Fluid Mech. 66, 739–752 (1974)Google Scholar
  75. 5.75
    G. Veronis: Large-amplitude Bénard convection. J. Fluid Mech. 26, 49 (1966)Google Scholar
  76. 5.76
    T. Y. Chu, R.J. Goldstein: Turbulent convection in a horizontal layer of water. J. Fluid Mech. 60, 141–159 (1973)Google Scholar
  77. 5.77
    H. Oertel, Jr., K. Bühler: A special differential interferometer used for heat convection investigations. Int. J. Heat Mass Transfer 21, 1111–1115 (1978)Google Scholar
  78. 5.78
    P. Bergé, M. Dubois: Convectioe velocity field in the Rayleigh-Bérnard instability: experimental results. Phys. Rev. Lett. 32, 1041–1044 (1974)Google Scholar
  79. 5.79
    M. Dubois, P. Bergé: Experimental study of the velocity field in Rayleigh-Bénard convection. J. Fluid Mech. 85, 641–653 (1978)Google Scholar
  80. 5.80
    R. Krishnamurti: On the transition to turbulent convection. Part 1. The transition from twoto three-dimensional flow. J. Fluid Mech. 42, 295–307 (1970a)Google Scholar
  81. 5.81
    J. A. Whitehead, G. L. Chan: Stability of Rayleigh-Bénard convection rolls and bimodal flow at moderate Prandtl number. Dyn. Atmos. Oceans 1, 33–49 (1976)Google Scholar
  82. 5.82
    G. E. Willis, J. W. Deardorff: Development of short-period temperature fluctuations in thermal convection. Phys. Fluids 10, 931–937 (1967)Google Scholar
  83. 5.83
    R. Krishnamurti: On the transition to turbulent convection. Part 2. The transition to timedependent flow. J. Fluid Mech. 42, 309–320 (1970b)Google Scholar
  84. 5.84
    R. Krishnamurti: Some further studies on the transition to turbulent convection. J. Fluid Mech. 60, 285–303 (1973)Google Scholar
  85. 5.85
    J. A. Whitehead, B. Parsons: Observations of convection at Rayleigh numbers up to 760,000 in a fluid with large Prandtl number. Geophys. Astrophys. Fluid Dyn. 9, 201–217 (1978)Google Scholar
  86. 5.86
    P. Bergé, M. Dubois: Time dependent velocity in Rayleigh-Bénard convection: a transition to turbulence. Opt. Commun. 19, 129–133 (1976)Google Scholar
  87. 5.87
    J.P. Gollub, S. L. Hulbert, G. M. Dolny, H. L. Swinney: “Laser Doppler Study of the Onset of Turbulent Convection at low Prandtl Number”, in Photon Correlation Spectroscopy and Velocimetry, ed. by H. Z. Cummins, E. R. Pike (Plenum Press, New York, London 1977) pp. 425–439Google Scholar
  88. 5.88
    P. Bergé: “Experimental Evidence of the Behaviour of Convective Velocity in Rayleigh-Bénard Instability: Different Transitions Toward Turbulence”, Paper presented at the European Mechanics Colloquium, No. 106, Instabilities and Convection in Fluid Layers, Grenoble (1978)Google Scholar
  89. 5.89
    A. Libchaber, J. Maurer: Local probe in a Rayleigh-Bénard experiment in liquid helium. J. Physique Lett. 39, 369–372 (1978)Google Scholar
  90. 5.90
    J. M. Olson, F. Rosenberger: Convective instabilities in a closed vertical cylinder heated from below. Part 1: Monocomponent gases. J. Fluid Mech. 92, 609–629 (1979)Google Scholar
  91. 5.91
    D.T.J. Hurle, E. Jakeman, C.P. Johnson: Convective temperature oscillations in molten gallium. J. Fluid Mech. 64, 565–576 (1974)Google Scholar
  92. 5.92
    J. B. Keller: Periodic oscillations in a model of thermal convection. J. Fluid Mech. 26, 599–606 (1966)Google Scholar
  93. 5.93
    P. Welander: On the oscillatory instability of a differentially heated fluid loop. J. Fluid Mech. 29, 17–30 (1967)Google Scholar
  94. 5.94
    Y.P. Chang: A theoretical analysis of heat transfer in natural convection and in boiling. Trans. Am. Soc. Mech. Engrs. 79, 1501–1513 (1957)Google Scholar
  95. 5.95
    L. N. Howard: “Convection at High Rayleigh Number”, in Proc. 11th Internat. Congress of Appl. Mech., Munich, 1964, ed. by H. Görtler (Springer, Berlin, Heidelberg, New York 1966) pp. 1109–1115Google Scholar
  96. 5.96
    E. N. Lorenz: Deterministic nonperiodic flow. J. Atmos. Sci 20, 130 (1963)Google Scholar
  97. 5.97
    J. B. McLaughlin, P. C. Martin: Transition to turbulence in a statically stressed fluid system. Phys. Rev. A 12, 186–203 (1975)Google Scholar
  98. 5.98
    R. J. Goldstein, T. Y. Chu: Thermal convection in a horizontal layer of air. Progr. Heat Mass Transfer 2, 55–75 (1971)Google Scholar
  99. 5.99
    A.M. Garon, R.J. Goldstein: Velocity and heat transfer measurements in thermal convection. Phys. Fluids 16, 1818–1825 (1973)Google Scholar
  100. 5.100
    W. V. R. Malkus: Discrete transitions in turbulent convection. Proc. R. Soc. (London) A 225, 185–195 (1954)Google Scholar
  101. 5.101
    F. H. Busse, D. D. Joseph: Bounds for heat transport in a porous layer. J. Fluid Mech. 54, 521–543 (1972)Google Scholar
  102. 5.102
    D.C. Threlfall: Free convection in low-temperature gaseous helium. J. Fluid Mech. 67, 17–28 (1975)Google Scholar
  103. 5.103
    G. E. Willis, J. W. Deardorff: Confirmation and renumbering of the discrete heat flux transitions of Malthus. Phys. Fluids 10, 1861–1866 (1967)Google Scholar
  104. 5.104
    J. J. Carroll: “The Structure of Turbulent Convection”, Ph.D. Dissertation, Dept. of Meteorology, University of California, Los Angeles (1971)Google Scholar
  105. 5.105
    E. L. Koschmieder, S. G. Pallas: Heat transfer through a shallow, horizontal convecting fluid layer. Int. J. Heat Mass Transfer 17, 991–1002 (1974)Google Scholar
  106. 5.106
    J. W. Deardorff, G. E. Willis: Investigation of turbulent thermal convection between horizontal plates. J. Fluid Mech. 28, 675–704 (1967)Google Scholar
  107. 5.107
    D. E. Fitzjarrald: An experimental study of turbulent convection in air. J. Fluid Mech. 73, 693–719 (1976)Google Scholar
  108. 5.108
    E. F. C. Somerscales, H. Parsapour: A new approach to the detection of Malkus transition in free convection. Bull. Am. Phys. Soc. 21, 1236 (1976)Google Scholar
  109. 5.109
    S. Kogelman, R. C. DiPrima: Stability of spatially periodic supercritical flows in hydrodynamics. Phys. Fluids 13, 1–11 (1970)Google Scholar
  110. 5.110
    W. Eckhaus: Studies in Non-Linear Stability Theory, Springer Tracts in Natural Philosophy, Vol. 6 (Springer, Berlin, Heidelberg, New York 1965)Google Scholar
  111. 5.111
    J. T. Stuart, R. C. DiPrima: The Eckhaus and Benjamin-Feir resonance mechanism. Proc. R. Soc. (London) A362, 27–41 (1978)Google Scholar
  112. 5.112
    F. H. Busse, R. M. Clever: Instabilities of convection rolls in a fluid of moderate Prandtl number. J. Fluid Mech. 91, 319–335 (1979)Google Scholar
  113. 5.113
    R. M. Clever, F. H. Busse: Large wavelength convection rolls in low Prandtl number fluids. J. Appl. Math. Phys. (ZAMP) 29, 711–714 (1978)Google Scholar
  114. 5.114
    F. H. Busse: The oscillatory instability of convection rolls in a low Prandtl number fluid. J. Fluid Mech. 52, 97–112 (1972)Google Scholar
  115. 5.115
    G. Veronis: Large-amplitude Bénard convection in a rotating fluid. J. Fluid Mech. 31, 113–139 (1968)Google Scholar
  116. 5.116
    R. M. Clever, F. H. Busse: Nonlinear properties of convection rolls in a horizontal layer rotating about a vertical axis. J. Fluid Mech. 94, 609–627 (1979)Google Scholar
  117. 5.117
    G. Küppers, D. Lortz: Transition from laminar convection to thermal turbulence in a rotating fluid layer. J. Fluid Mech. 35, 609–620 (1969)Google Scholar
  118. 5.118
    E. Hopf: A mathematical example displaying features of turbulence. Commun. Pure Appl. Math. 1, 303 (1948)Google Scholar
  119. 5.119
    R. G. Finucane, R. E. Kelly: Onset of instability in a fluid layer heated sinusoidally from below. Int. J. Heat Mass Transfer 19, 71–85 (1976)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • F. H. Busse

There are no affiliations available

Personalised recommendations