Strange attractors and turbulence

  • O. E. Lanford
Part of the Topics in Applied Physics book series (TAP, volume 45)


Reynolds Number State Space Periodic Solution Hamiltonian System Rayleigh Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 2.1
    D. Ruelle, F. Takens: On the nature of turbulence. Commun. Math. Phys. 20, 167–192 (1971); 23, 343–344 (1971)Google Scholar
  2. 2.2
    J. von Neuman, E. P. Wigner: Über das Verhalten von Eigenwerten bei adiabatischen Prozessen. Phys. Z. 30, 467–470 (1929)Google Scholar
  3. 2.3
    D. Ruelle: Bifurcation in the presence of a symmetry group. Archiv. Ration. Mech. Anal. 51, 136–152 (1973)Google Scholar
  4. 2.4
    D. Coles: Transition in circular Couette flow. J. Fluid Mech. 75, 1–15 (1965)Google Scholar
  5. 2.5
    P. R. Fenstermacher, H. L. Swinney, J. P. Gollub. Dynamical instâbilities and the transition to chaotic Taylor vortex flow. J. Fluid Mech. 94, 103–128 (1979)Google Scholar
  6. 2.6
    J. E. Marsden, M. McCracken: The Hopf Bifurcation and its Applications. Applied Math. Sci., Vol. 19 (Springer, Berlin, Heidelberg, New York 1976)Google Scholar
  7. 2.7
    S. Newhouse, D. Ruelle, F. Takens: Occurrence of strange Axiom A attractors near quasiperiodic flows on T m, m ≧ 3. Commun. Math. Phys. 64, 35–40 (1978)Google Scholar
  8. 2.8
    O. E. Lanford III: “An Introduction to the Lorenz System”, 1976 Duke Turbulence Conference, Duke Univ. Math. Series 3 (1977)Google Scholar
  9. 2.9
    R. Mañe: Contributions to the stability conjecture. Topology 17, 383–396 (1978)Google Scholar
  10. 2.10
    L. Breiman: Probability (Addison-Wesley, Reading 1968)Google Scholar
  11. 2.11
    D.Ruelle: On the measures which describe turbulence, IHES preprint (1978); D.Ruelle: What are the measures that describe turbulence? Prog. Theor. Phys., Supplement No. 64, 339–345 (1978)Google Scholar
  12. 2.12
    S. Smale: Differentiable dynamical systems. Bull. Am. Math. Soc. 73, 748–817 (1967)Google Scholar
  13. 2.13
    R. V. Plykin: Sources and currents of A-diffeomorphisms of surfaces. Mat. Sb. 94, No. 2 (6), 243–264 (1974)Google Scholar
  14. 2.14
    R. Bowen, D. Ruelle: The ergodic theory of Axiom A flows. Invent. Math. 29, 181–202 (1975)Google Scholar
  15. 2.15
    Ya. B. Pesin: Lyapunov characteristic exponents and ergodic properties of smooth dynamical systems with an invariant measure. Dokl. Akad. Nauk SSSR 226, No. 4, 774–777 (1976). [English translation: Sov. Mat. Dokl. 17, No. 1, 196–199 (1976)]Google Scholar
  16. 2.16
    Ya. B. Pesin: Invariant manifold families which correspond to the non-vanishing characteristic exponents. Izv. Akad. Nauk SSSR, Ser. Mat. 40, No. 6, 1332–1379 (1976). [English translation: Math. USSR Izv. 10, No. 6, 1261–1305 (1976)]Google Scholar
  17. 2.17
    Ya. B. Pesin: Lyapunov characteristic exponents and smooth ergodic theory. Uspekhi Mat. Nauk 32, No. 4, 55–112 (1977). [English translation: Russ. Math. Surv. 32, No. 4, 55–114 (1977)]Google Scholar
  18. 2.18
    S. Katok: The estimation from above for the topological entropy of a diffeomorphism; in Global Theory of Dynamical Systems, ed. by Z. Netecki, C. Robinson, Lecture Notes in Mathematics, Vol. 819 (Springer, Berlin, Heidelberg, New York 1980) pp. 259–264Google Scholar
  19. 2.19
    D. Ruelle: Ergodic theory of differentiable dynamical systems. Publ. Math. IHES 50, 27–58 (1979)Google Scholar

Copyright information

© Springer-Verlag 1981

Authors and Affiliations

  • O. E. Lanford

There are no affiliations available

Personalised recommendations