Thermotropic mesophases and mesophase transitions of linear, flexible macromolecules

  • Bernhard Wunderlich
  • Janusz Grebowicz
Conference paper
Part of the Advances in Polymer Science book series (POLYMER, volume 60/61)


The field of mesophases is subdivided into six different phases: liquid crystals, plastic crystals, condis crystals and the corresponding LC, PC, and CD glasses. Liquid and plastic crystals are the traditional phases with positional and orientational disorder, respectively. Condis crystals are conformationally disordered. On hand of tables of thermodynamic transition parameters of small and large molecules it is shown that the orientational order in liquid crystals is only a few per cent of the total possible, while the positional order in plastic crystals is virtually complete. Condis crystals have a wide variety of different degrees of conformational disorder. The glass transitions of all mesophases are similar in type. Macromolecules in the liquid crystalline state produce high orientation on deformation. Plastic crystals consist always of small molecules. Condis crystals may under proper conditions anneal to extended chain crystals.


Liquid Crystal Plastic Crystal Orientational Order Liquid Crystalline Polymer Amorphous Glass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7 References

  1. 1.
    Dalton, J.: “A New System of Chemical Philosophy”. Republication by Citadel Press (The Science Classic Library) of the 1808 first edition, New York, NY 1964, Chapter II, Section 4, Paragraph 2Google Scholar
  2. 2.
    Friedel, M. G.: “Les Etats Mésomorphes de la Matiére”, Ann. Phys. (Paris) 18, 273 (1922)Google Scholar
  3. 3.
    Wunderlich, B.: “Macromolecular Physics”, Vol. 3, “Crystal Melting”. Academic Press, New York, NY 1980Google Scholar
  4. 4.
    Staudinger, H.: “Organische Kolloidchemie”. 3rd ed., Vieweg Verlag, Braunschweig 1950Google Scholar
  5. 5.
    Reinitzer, F.: “Beiträge zur Kenntnis des Cholesterins”, Monatsh. 9, 421, 1888. The term liquid crystals was first used by O. Lehmann in “Fluessige Kristalle”. Engelmann, Leipzig, 1904. See also H. Kelker, History of liquid crystals. Mol. Cryst. Liq. Cryst. 21, 1 (1973). For a history of the discovery and recognition of plastic crystals see J. Timmermanns, Plastic crystals, a historical review. J. Phys. Chem. Solids 18, 1 (1961)Google Scholar
  6. 6.
    see for example White, J. L. and Fellers, J. F.: Macromolecular liquid crystals and their applications to high-modulus and tensile-strength fibers. J. Appl. Polymer. Sci., Appl. Polymer Symposium 33, 137 (1978)Google Scholar
  7. 7.
    see Smith, G. W.: Plastic Crystals, Liquid Crystals, and the Melting Phenomenon. The Importance of Order. Adv. in Liquid Crystals, Vol. 1, G. H. Brown ed., Academic Press, 1975, New York, NY, see this review also for extensive listings of prior ReferencesGoogle Scholar
  8. 8.
    see for example: Ubbelohde, A. R.: “Melting and Crystal Structure”. Oxford University Press (Clarendon), London and New York 1965; see also the recent update “The Molten State of Matter. Melting and Crystal Structure”. Wiley, New York 1978Google Scholar
  9. 9.
    For a detailed discussion with many examples, see Chapter 8.2 of Reference 3Google Scholar
  10. 10.
    Richards, J. W.: Relations between the melting-points and the latent heats of fusion of the metals. Chem. News 75, 278 (1897)Google Scholar
  11. 11.
    Walden, P.: Ueber die Schmelzwaerme, spezifische Kohaesion und Molekulargroesse bei der Schmelztemperatur. Z. Elektrochem. 14, 713 (1908)Google Scholar
  12. 12.
    Chapter 8.4.7 of reference 3Google Scholar
  13. 13.
    Wunderlich, B.: Study of the change in specific heat of monomeric and polymeric glasses during the transition. J. Phys. Chem. 64, 1052 (1960)Google Scholar
  14. 14.
    U. Gaur and B. Wunderlich, Additivity of the heat capacities of linear macromolecules in the molten state. Polymer Div. Am. Chem. Soc. Preprints 20, 429 (1979)Google Scholar
  15. 15.
    Some general reviews of liquid crystals areGoogle Scholar
  16. 15a.
    Gray, G. W.: “Molecular Structure and the Properties of Liquid Crystals”. Academic Press, New York 1962Google Scholar
  17. 15b.
    Gray, G. W. and Winsor, P. A.: eds. “Liquid Crystals and Plastic Crystals”. Wiley, Chichester 1974Google Scholar
  18. 15c.
    de Gennes, P. G.: “The Physics of Liquid Crystals”. Clarendon Press, Oxford 1974Google Scholar
  19. 15d.
    Johnson, J. F. and Porter, R. S.: eds. “Liquid Crystals and Ordered Fluids”. Vol. 1 and 2, Plenum Press, New York, NY, 1970, 1974Google Scholar
  20. 15e.
    Porter, R. S. and Johnson, J. F.: eds. “Ordered Fluids and Liquid Crystals'. Am. Chem. Soc. Washington, DC 1967Google Scholar
  21. 15f.
    Symposium of the Faraday Soc. #5, “Liquid Crystals”. Farad. Div. Chem. Soc. London 1972Google Scholar
  22. 15g.
    Proc. Int. Conf. Liq. Cryst., Gordon and Breach, London since 1965Google Scholar
  23. 15h.
    See also the journal Molecular Crystals Liquid Crystals, Gordon and BreachGoogle Scholar
  24. 15i.
    Ciferri, A., Krigbaum, W., and Meyer, R. B.: eds. “Polymer Liquid Crystals”. (Materials Sci. and Tech. Ser.) Academic Press, New York, NY, 1983Google Scholar
  25. 16.
    Some general reviews of plastic crystals areGoogle Scholar
  26. 16a.
    Sherwood, N.: ed. “The Plastically Crystalline State”. (Orientationally-disordered crystals). J. Wiley and Sons, Chichester 1979Google Scholar
  27. 16b.
    Aston, J. G.: “Plastic Crystals” in D. Fox, M. M. Labes and A. Weissberger, eds. “Physics and Chemistry of the Organic Solid State”. Interscience Publ., New York NY 1963, Vol. 1, Chapt. 9Google Scholar
  28. 16c.
    Staveley, L. A. K.: Phase transitions in plastic crystals. Annual Rev. of Phys. Chem.” 13, 351 (1962)Google Scholar
  29. 16d.
    DuPre, D. B., Samulski, E. T. and Tobolsky, A. V.: The mesomorphic state: liquid crystals and plastic crystals, in Tobolsky, A. V. and Mark, H. F. eds. “Polymer Science and Materials”. Chapter 7, Wiley-Interscience, New York, NY 1971Google Scholar
  30. 16e.
    Proc. of the Symposium on Plastic Crystals and Rotation in the Solid State. April, 1960, Phys. Chem. Solids 18 (1) (1961)Google Scholar
  31. 16f.
    See also Refs. 7 and 15bGoogle Scholar
  32. 17.
    Ehrenfest, P.: Phase changes classified according to the singularities of the thermodynamic potential. Proc. Acad. Sci., Amsterdam 36, 153 (1933); Suppl. 75b, Mitt. Kammerlingh Onnes Inst., LeidenGoogle Scholar
  33. 18.
    Wunderlich, B.: “Macromolecular Physics”, Vol. 1, “Crystal Structure, Morphology, Defects”. Academic Press, New York, 1973Google Scholar
  34. 19.
    Wunderlich, B.: “Macromolecular Physics”, Vol. 2, “Crystal Nucleation, Growth Annealing”. Academic Press, New York 1976Google Scholar
  35. 20.
    Meesiri, W., Menczel, J., Gaur, U. and Wunderlich, B.: Phase transitions in mesophase macromolecules. III. The transitions in poly(ethylene terephthalate-co-oxybenzoate). J. Polymer. Sci., Polymer Phys. Ed., 20, 719 (1982)Google Scholar
  36. 21.
    Menczel, J. and Wunderlich, B.: Phase transitions in mesophase macromolecules. II. The transitions of poly(p-acryloyloxybenzoic acid). Polymer 22, 778 (1981)Google Scholar
  37. 22.
    Flory, P. J.: Phase equilibria in solutions of rod-like particles. Proc. Roy. Soc. London, Ser. A. 234, 73 (1956)Google Scholar
  38. 23.
    See Section 5.2.2 and refs. 104, 105 and 107Google Scholar
  39. 24.
    Wolpert, S. M., Weitz, A. and Wunderlich, B.: Time-dependend heat capacity in the glass transition region. J. Polymer. Sci., Part A-2, 9, 1887 (1971)Google Scholar
  40. 25.
    Wunderlich, B., Bodily, D. M. and Kaplan, M. H.: Theory and measurement of the glass-transformation interval of polystyrene. J. Appl. Phys. 35, 95 (1964)Google Scholar
  41. 26.
    Grebowicz, J. and Wunderlich, B.: The glass transition of p-alkyl-p′-alkoxy-azoxybenzene mesophases. Mol. Cryst. Liq. Cryst. 76, 287 (1981)Google Scholar
  42. 27.
    Grebowicz, J. and Wunderlich, B.: Phase transitions in mesophase macromolecules. IV. The transitions in poly(oxy-2,2′-dimethylazoxybenzene-4,4′-diyloxydodecanedioyl). J. Polymer Sci., Polymer Phys. Ed. 21, 141 (1983)Google Scholar
  43. 28.
    Menczel, J. and Wunderlich, B.: Heat capacity hysteresis of semicrystalline macromolecular glasses. J. Polymer Sci., Polymer Letters Ed. 19, 261 (1981)Google Scholar
  44. 29.
    Poisson, S. D.: “Recherches sur la probabilité des jugements en matière criminelle et en matière civile”, p. 206, Bachelier, Paris 1837Google Scholar
  45. 30.
    An equation of the type of eq. 7 for crystallization was first proposed by Kolmogoroff, A. N.: On the crystallization process in metals. Isvest. Akad. Nauk SSSR Ser. Math. 1, 335 (1937) and than independently derived by Avrami and othersGoogle Scholar
  46. 31.
    Price, F. P. and Wendorff, J. H.: Transitions in mesophase forming systems. I. Transformation kinetics and pretransition effects in cholesteryl myristate. J. Phys. Chem. 75, 2839 (1971)Google Scholar
  47. 32.
    Jabarin, S. A. and Stein, R. S.: Light scattering and microscopic investigations of mesophase transitions of cholesteryl myristate. II. Kinetics of spherulite formation. J. Phys. Chem. 77, 409 (1973)Google Scholar
  48. 33.
    Price, F. P. and Wendorff, J. H.: Transitions in mesophase forming systems. III. Transformation kinetics and textural changes in cholesteryl nonanoate. J. Phys. Chem. 76, 276 (1972)Google Scholar
  49. 34.
    Price, F. P. and Wendorff, J. H.: Transitions in mesophase forming systems. II. Transformation kinetics and properties of cholesteryl acetate. J. Phys. Chem. 75, 2849 (1971)Google Scholar
  50. 35.
    Price, F. P. and Fritzsche, A. K.: Kinetics of spherulite growth in cholesteryl esters. J. Phys. Chem. 77, 396 (1973)Google Scholar
  51. 36.
    Adamski, P. and Klimczyk, S.: The crystallization rate constant and Avrami index for cholesterol pelargonate. Sov. Phys. Crystallogr. 23, 82 (1978)Google Scholar
  52. 37.
    Adamski, P. and Czyzewski, R.: Activation energy and growth rate of spherulites of cholesterol liquid crystals. Soc. Phys. Crystallogr. 23, 725 (1978)Google Scholar
  53. 38.
    Warner, S. B. and Jaffe, M.: Quiescent crystallization in thermotropic polyesters. J. Crystal Growth 48, 184 (1980)Google Scholar
  54. 39.
    For a discussion see Ref. 19, Chapter 6.3.3Google Scholar
  55. 40.
    Hellmuth, E. and Wunderlich, B.: Suerheating of linear high-polymer polyethylene crystals. J. Appl. Phys. 36, 3039 (1965)Google Scholar
  56. 41.
    Wunderlich, B.: Molecular nucleation and segregation. Disc. Farad. Soc. 68, 239 (1979)Google Scholar
  57. 42.
    Hellmuth, E., Wunderlich, B. and Rankin, J. M.: Superheating of linear high polymers. Polytetrafluoroethylene. Appl. Polymer Symposia, 2, 101 (1966)Google Scholar
  58. 43.
    Wunderlich, B. and Shu, H. C.: The crystallization and melting of selenium. J. Crystal Growth 48, 227 (1980); and H.-C. Shu and B. Wunderlich, Crystallization of Selenium from the vapor phase. Polymer 21, 521 (1980)Google Scholar
  59. 44.
    Landolt Boernstein “Zahlenwerte und Funktionen”. Sixth Edition, K. Schaefer and E. Lax, eds., Berlin, 1960. Vol. II, Part 2a, Kast, W.: “Umwandlungstemperaturen kristalliner Fluessigkeiten”, p. 266, Listing of 1500 small molecules. Vol. II, Part 6, Maier, W.: “Dielektrische Eigenschaften von kristallinen Fluessigkeiten”, p. 607. Vol. II, Part 8, Maier, W.: “Optische und Magnetooptische Eigenschaften von kristallinen Fluessigkeiten”, p. 553Google Scholar
  60. 45.
    First described by Chandrasekhar, S., Sadashiva, B. K. and Suresh, K. A. (Pramana 9, 471, 1977). For a recent review see Billard, J. in W. Helfrich and G. Heppke, eds. “Liquid Crystals of One-and Two-Dimensional Order”. Springer Verlag, Berlin 1980Google Scholar
  61. 46.
    Brooks, J. D. and Taylor, G. H.: The formation of graphitizing carbons from the liquid phase. Carbon 3, 185 (1965) (see also the “Extended Abstracts of the 12th Biennial Conference on Carbon”, Am. Carbon Soc., 1975).Google Scholar
  62. 47.
    See for example Benoit, H., Freund, L. and Spach, G.: in Fasman, G. ed. “Poly-alpha-amino acids”. Vol. 1, p. 105, Dekker, 1967; and Samulski, E. T.: Liquid crystalline order in poly-peptides, in A. Blumstein, ed., “Liquid Crystalline Order in Polymers”. Academic Press, New York, NY 1978Google Scholar
  63. 48.
    Luzzati, V.: The structure of DNA as determined by X-ray scattering techniques. Progr. Nucleic Acid Res. 1, 347 (1963). See also Ref. 52Google Scholar
  64. 49.
    See Ref. 15c p. 5Google Scholar
  65. 50.
    See for exampleGoogle Scholar
  66. 50a.
    Gallot, B.: Liquid crystalline structure of block copolymers, p. 11 in A. Blumstein, ed., “Liquid Crystalline Order in Polymers”. Academic Press, New York 1978Google Scholar
  67. 50b.
    J. Polymer Sci., Part C, Vol. 26 (1969)Google Scholar
  68. 50c.
    Aggarwal, S., ed.: “Block Copolymers”. Plenum Press, New York, NY 1970Google Scholar
  69. 50d.
    Allport, D. C. and James, W. H. eds.: “Block Copolymers”. Halstad Press, New York, NY 1973Google Scholar
  70. 51.
    See for example: Skoulios, A.: La structure des solutions aqueuses concentrées de savon. Adv. Colloid Interface Sci. 1, 79 (1967)Google Scholar
  71. 52.
    See for example: Bouligand, Y.: Liquid crystalline order in biological materials, p. 261 in Blumstein, A. ed.: “Liquid Crystalline Order in Polymers”. Academic Press, New York 1978. And Chapman, D.: “The Structure of Lipids”. Methuen, London, 1965Google Scholar
  72. 53.
    Gaur, U. and Wunderlich, B.: Study of microphase separation in block copolymers of styrene and alpha-methylstyrene in the glass transition region using quantitative thermal analysis. Macromolecules 13, 1618 (1980)Google Scholar
  73. 54.
    Charvolin, J. and Tardieu, A.: Lyotropic liquid crystals: Structures and Molecular Motions, in L. Liebert, ed. “Liquid Crystals”. Solid State Physics, Supplement 14, Academic Press, New York, NY 1978, p. 209Google Scholar
  74. 55.
    Sackmann, H. and Demus, D.: The problem of polymorphism in liquid crystals. Mol. Cryst. Liq. Cryst. 21, 239 (1973)Google Scholar
  75. 56.
    Tinh, N. H., Destrade, C. and Gasparoux, G.: Nematic disc-like liquid crystals. Phys. Lett. 72A, 251 (1979)Google Scholar
  76. 57.
    Destrade, C., Tinh, N. H., Gasparoux, G., Malthete, J. and Levelut, A. M.: Disc-like mesogens: A classification. Mol. Cryst. Liq. Cryst. 71, 111 (1981)Google Scholar
  77. 58.
    Petrie, S. E. B.: Smectic liquid crystals, in Saeva, F. D., ed. “Liquid Crystals, the Fourth State of Matter”. Marcel Dekker, New York, NY 1979Google Scholar
  78. 59.
    Barrall II, E. M. and Johnson, J. F.: Thermal properties of liquid crystals in ref. 15b, p. 254Google Scholar
  79. 60.
    Sorai, M. and Suga, H.: Studies on mesogenic disc-like molecules. II. Heat capacity of benzenehexa-n-heptanoate from 13 to 393 K. Mol. Cryst. Liq. Cryst. 73, 47 (1981)Google Scholar
  80. 61.
    Vorlaender, D.: Remarks on Liquocrystalline Resins and Laquers. Trans. Farad. Soc. 29, 207 (1933)Google Scholar
  81. 62.
    Sorai, M. and Seki, S.: Glassy liquid crystal of the the nematic phase of N-(o-Hydroxy-p-methoxybenzylidene)-p-butylaniline. Bull. Chem. Soc. Japan 44, 2887 (1971)Google Scholar
  82. 63.
    Tsuji, K., Sorai, M. and Seki, S.: New finding of glassy liquid crystal — a non-equilibrium state of cholesteryl hydrogen phthalate. Bull. Chem. Soc., Japan 44, 1452 (1971)Google Scholar
  83. 64.
    Sorai, M. and Seki, S.: Heat capacity of N-(o-hydroxy-p-methoxybenzylidene)-p-butylaniline: A glassy nematic liquid crystal. Mol. Cryst. Liq. Cryst. 23, 299 (1973)Google Scholar
  84. 65.
    Petrie, S. E. B.: The effect of excess thermodynamic properties versus structure formation on the physical properties of glassy polymers. J. Macromol. Sci., Phys. 12, 225 (1976)Google Scholar
  85. 66.
    Kessler, J. O. and Lydon, J. E.: Structure and thermal conductivity of supercooled MBBA. In Vol. 2. of of ref. 15d, p. 331Google Scholar
  86. 67.
    Cognard, J. and Gangguillet: Glassy transition in liquid crystal eutectic mixtures. Mol. Cryst. Liq. Cryst. Lett. 49, 33 (1978)Google Scholar
  87. 68.
    Chistyakov, I. G., Schabischev, L. S., Jarenov, R. I. and Gusakova, L. A.: The polymorphism of the smectic liquid crystal. Mol. Cryst. Liq. Cryst. 7, 279 (1969)Google Scholar
  88. 69.
    Deniz, K. U., Paranjpe, A. S., Mirza, E. B., Parvathanathan, P. S. and Patel, K. S.: DSC and X-ray diffraction investigations of phase transitions in HxBABA and NBABA. J. de Physique, C3, 40, 136 (1979)Google Scholar
  89. 70.
    Blumstein, A. and Hsu, E. C.: Liquid crystalline order in polymers with mesogenic side groups; in Blumstein, A. ed.: “Liquid Crystalline Order in Polymers”. Academic Press, New York, NY 1978, p. 105Google Scholar
  90. 71.
    See particularly the extensive work of Strzelecki, L. and Liebert, L.: published in the Bull. Soc. Fr. (1973) p. 597, 603, 605; (1975) p. 2073, 2750. See also Bouligand, Y., Cladis, P. E., Liebert, L. and Strzelecki, L.: Study of sections of polymerized liquid crystals. Mol. Cryst. Liq. Cryst. 25, 233 (1974)Google Scholar
  91. 72.
    Ref. 3, Chapter 10.3.4Google Scholar
  92. 73.
    Plate, N. A. and Shibaev, V. P.: Comb-like polymers. Structure and properties. J. Polymer Sci., Macromol. Rev. 8, 117 (1974)Google Scholar
  93. 74.
    Shibaev, V. P., Freidzon, Ya. S. and Plate, N. A.: Cholesterol-containing Liquid-crystalline polyers; Dokl. Akad. Nauk USSR 227, 1412 (1976)Google Scholar
  94. 75.
    Shibaev, V. P. and Plate, N. A.: Liquid crystalline polymers, Vysokomol. Soedin. A1 9, 923 (1977), [Engl. translat. Polymer. Sci. USSR 19, 1065 (1977)]Google Scholar
  95. 76.
    Finkelmann, H., Ringsdorf, H. and Wendorff, J. H.: Model considerations and examples of enantiotropic liquid crystalline polymers. Makromol. Chem. 179, 273 (1978)Google Scholar
  96. 77.
    Maganini, P. L.: Structure and properties of polymers with strongly anisometric side groups. Makromol. Chem. Suppl. 4, 223 (1981)Google Scholar
  97. 78.
    Frosini, V.: Mechanical relaxation in polymer mesophases. Proc. 28th Macromol. Symp. IUPAC, U. Mass., Amherst, MA, p. 806, 1982Google Scholar
  98. 79.
    Shibaev, V. P., Plate, N. A. and Freidzon, Y. S.: Thermotropic cholesterol-containing liquid crystalline polymers, in A. Blumstein, ed. “Mesomorphic Order in Polymers”. ACS Symposium Series 74, Am. Chem. Soc. Washington, D.C. 1978. See also J. Poly. Sci., Polymer Chem. Ed. 17, 1655 (1979)Google Scholar
  99. 80.
    Lupinacci, D., Frosini, V. and Magagnini, P. L.: Mesomorphic structure of a homopolymer of N-(4-biphenyl)acrylamide and of copolymers with 4-biphenylacrylate. Makromol. Chem. Rapid Commun. 1, 671 (1980)Google Scholar
  100. 81.
    Finkelmann, H., Happ, M., Portugal, M. and Ringsdorf, H.: Liquid crystalline polymers with biphenyl-moieties as mesogenic group. Makromol. Chem. 179, 2541 (1978)Google Scholar
  101. 82.
    Frenzel, J. and Rehage, G.: PVT-measurements on liquid crystalline polymers. Makromol. Chem., Rapid Commun. 1, 129 (1980)Google Scholar
  102. 83.
    Finkelmann, F., Ringsdorf, H., Siol, W. and Wendorff, H.: Synthesis of cholesteric liquid crystalline polymers. Makromol. Chem. 179, 829 (1978)Google Scholar
  103. 84.
    Shibaev, V. P., Moiseenko, V. M., Plate, N. A.: Thermotropic liquid crystalline polymers, 3, Comb-like polymers with side chains simulating the smectic type of liquid crystals. Makromol. Chem. 181, 1381 (1980)Google Scholar
  104. 85.
    Finkelmann, H. and Rehage, G.: Investigations on liquid crystalline polysiloxanes, 1, Synthesis and characterization of linear polymers. Makromol. Chem. Rapid Commun. 1, 31 (1980)Google Scholar
  105. 86.
    Wendorff, J. H.: Scattering in liquid crystalline polymer systems, in A. Blumstein, ed. “Liquid Crystalline Order in Polymers”. Academic Press, New York, NY 1978, p. 1Google Scholar
  106. 87.
    Hardy, Gy., Cser, F., Nyitrai, K., Samay, G. and Kallo, A.: Investigation of the mesomorphic structure of p-alkoxy-phenyl-p-acryloyloxybenzoate polymers. J. Cryst. Growth, 48, 191 (1980)Google Scholar
  107. 88.
    Shibaev, V. P., Tal'rose, R. V., Karakhanova, F. I. and Plate, N. A.: Thermotropic liquid crystals. II. Polymers with aminoacid fragments in the side chains. J. Polymer. Sci. Polymer Chem. Ed. 17, 1671 (1979)Google Scholar
  108. 89.
    Finkelmann, H., Lehmann, B. and Rehage, G.: Phase behaviour of lyotropic liquid crystalline side chain polymers in aqueous solutions. Colloid Polymer Sci. 260, 56 (1982)Google Scholar
  109. 90.
    Asrar, J., Thomas, O., Zhou, Q. and Blumstein, A.: Thermotropic liquid crystalline polyesters: Structure property relationship. Proc. 28th Macromol. Symp. IUPAC, U. Mass., Amherst, MA, p. 797, 1982Google Scholar
  110. 91.
    Jannelli, P., Roviello, A. and Sirigu, A.: Mesophasic properties of linear copolymers. Proc. 28th Macromol. Symp. IUPAC, U. Mass., Amherst, MA, p. 803, 1982. See also J. Polymer Sci., Polymer Lett. Ed. 13, 455 (1975), Makromol. Chem. 181, 1799 (1980) and Europ. Polymer J. 15, 61, (1979)Google Scholar
  111. 92.
    Jo, B. W. and Lenz, R. W.: Liquid crystalline polymers, 7, thermotropic polyesters with main chain phenyl-1,4-phenylene, 4,4′-biphenylene, and 1,1′-binaphthyl-4,4′-ylene units. Makromol. Chem. Rapid Commun. 3, 23 (1982)Google Scholar
  112. 93.
    Griffin, A. C. and Havens, S. J.: Mesogenic polymers. III. Thermal properties and synthesis of three homologous series of thermotropic liquid crystalline “backbone” polyesters. J. Polymer Sci., Polymer Phys. Ed. 19, 951 (1981)Google Scholar
  113. 94.
    Iimura, K., Koide, N., Ohta, R. and Takeda, M.: Synthesis of thermotropic liquid crystalline polymers, 1, azoxy and azo-type polyesters. Makromol. Chemie 182, 2563 (1981)Google Scholar
  114. 95.
    Iimura, K., Koide, N., Tanabe, H. and Takeda, M.: Synthesis of thermotropic liquid crystalline polymers, 2, polyurethanes. Makromol. Chemie 182, 2569 (1981)Google Scholar
  115. 96.
    Roviella, A. and Sirgu, A.: Odd-even effects in polymeric liquid crystals. Makromol. Chem. 183, 895 (1982)Google Scholar
  116. 97.
    Takeda, M.: Recent developments in the area of thermotropic liquid crystalline polymers and their thermal analysis, in B. Miller, ed. “Thermal Analysis”, Vol. II, Proceedings of the 7th ICTA, Wiley and Sons 1982, p. 927Google Scholar
  117. 98.
    Blumstein, R. B. and Stickles, E.: Influence of molecular weight on some properties of polymeric liquid crystals. Proc. 28th Macromol. Symp. IUPAC, U. Mass., Amherst, MA, p. 799, 1982Google Scholar
  118. 99.
    Preston, J.: Synthesis and properties of rodlike condensation polymers. A. Blumstein, ed. “Liquid Crystalline Order in Polymers”. Academic Press, New York 1978, pg. 141Google Scholar
  119. 100.
    Winsor, P. A.: Non-amphiphilic cubic mesophases “plastic crystals”. Chapter 2.2 in Ref. 15bGoogle Scholar
  120. 101.
    Dunning, W. J.: The crystal structure of some plastic and related crystals in Ref. 16a, pg. 1Google Scholar
  121. 102.
    Westrum, Jr., E. F. and McCullough, J. P.: Thermodynamics of crystals, in Fox, D., Labes, M. M. and Weissberger, A.: “Physics and Chemistry of the Organic Solid State”. Interscience Publ., New York, NY 1963, p. 1–178Google Scholar
  122. 103.
    Boden, N.: NMR studies of plastic crystals. Chapter 5 in Ref. 16aGoogle Scholar
  123. 104.
    Adachi, K., Suga, H. and Seki, S.: Calorimetric study of the glassy state. VI. Phase changes in crystalline and glassy-crystalline 2,3-dimethylbutane. Bull. Chem. Soc. Japan 44, 78 (1971)Google Scholar
  124. 105.
    Adachi, K., Suga, H. and Seki, S.: Phase changes in crystalline and glassy-crystalline cyclohexanol. Bull. Chem. Soc. Japan 41, 1073 (1968)Google Scholar
  125. 106.
    Huffman, H. M., Todd, S. S. and Oliver, G. D.: Low temperature data on eight alkylcyclohexanes. J. Am. Chem. Soc. 71, 584 (1949)Google Scholar
  126. 107.
    Adachi, K., Suga, H. and Seki, S.: The glassy crystalline state — a non-equilibrium state of plastic crystals. Bull. Chem. Soc. Japan 43, 1916 (1970)Google Scholar
  127. 108.
    Schneider, N. S., Desper, C. R. and Beres, J. J.: Mesomorphic structure in polyphosphazenes in A. Blumstein, ed. “Liquid Crystalline Order in Polymers”. Academic Press, New York, NY 1978Google Scholar
  128. 109.
    Pechhold, W. and Blasenbrey, S.: Phase transitions, relaxations, and properties of high polymers. Angew. Makromol. Chem. 22, 3 (1972); see also Rheol. Acta 6, 174 (1967); Kolloid Z. Z. Polymere 216/217, 235 (1967); Ber. Bunsenges. 74, 784 (1970); and Kolloid Z. Z. Polymers 241, 955 (1970)Google Scholar
  129. 110.
    Baur, H.: Bemerkungen zur Defekttheorie von n-Paraffinen und Polymeren. Colloid and Polymer Sci. 252, 641 (1974), and: Zur Theorie der Umwandlungserscheinungen in n-Alkyl-Lamellen. Habilitationsschrift DB 1992+a, Technical University Hannover 1977Google Scholar
  130. 111.
    Statton, W. O.: Directional crystallization of polymers. Ann. N.Y. Acad. Sci. 83, 27 (1959)Google Scholar
  131. 112.
    Tadokoro, H.: “Structure of Crystalline Polymers”. Wiley-Interscience, New York, NY 1979Google Scholar
  132. 113.
    Wunderlich, B. and Arakawa, T.: Polyethylene crystallized from the melt under elevated pressure, J. Polymer Sci., Part A, 2, 3697 (1964)Google Scholar
  133. 114.
    Geil, P. H., Anderson, F. R., Wunderlich, B. and Arakawa, T.: Morphology of polyethylene crystallized from the melt under pressure. J. Polymer Sci., Part A, 2, 3703 (1964)Google Scholar
  134. 115.
    Arakawa, T. and Wunderlich, B.: Thermodynamic properties of extended chain polymethylene single crystals. J. Polymer Sci., Part C, 16, 653 (1967)Google Scholar
  135. 116.
    Wunderlich, B. and Melillo, L.: Morphology and growth of extended chain crystals of polyethylene. Makromol. Chemie 118, 250 (1968)Google Scholar
  136. 117.
    Bassett, D. C. and Turner, B.: Chain extended crystallization of polyethylene: Evidence of a new high-pressure phase. Nature (London) Phys. Sci. 240, 146 (1972); Bassett, D. C., Block, S. and Piermarini, G. J.: A high-pressure phase of polyethylene and chain-extended growth, J. Appl. Phys. 45, 4146 (1974); Yasuniwa, M., Nakafuku, C. and Takemura, T.: Melting and crystallization process of polyethylene under high pressure, Polymer J. 4, 526 (1973)Google Scholar
  137. 118a.
    For general reviews of the topic of extended chain crystals see: ref. 3, Chapter 8.5.2; ref. 18, Chapter 3.3.1; ref. 19, Chapter 6.3.3Google Scholar
  138. 118b.
    Bassett, D. C., Chain-extended polyethylene in context: a review. Polymer 17, 460 (1976)Google Scholar
  139. 118c.
    Matsushige, K. and Takemura, T.: Crystallization of macromolecules under high pressure. J. Crystal Growth 48, 343 (1980)Google Scholar
  140. 118d.
    Maeda, Y., Kanetsuna, H., Nagata, K., Matsushige, K. and Takemura, T.: Direct observation of phase transitions of polyethylene under high pressure by a PSPC X-ray system. J. Polymer Sci., Polymer Phys. Ed. 19, 1313 (1981)Google Scholar
  141. 119.
    Hikosaka, M., Minomura, S., Seto, T.: Melting and solid-solid transition of polyethylene under pressure. Japan. J. Applied Phys. 19, 1763, 1980Google Scholar
  142. 120.
    Yamamoto, T., Miyagi, H. and Asai, K.: Structure and properties of high pressure phase of polyethylene. Japan. J. Appl. Phys. 16, 1891 (1977)Google Scholar
  143. 121.
    Yasuniva, M., Enoshita, R. and Takemura, T.: X-ray studies of polyethylene under high pressure. Japan. J. Appl. Phys. 15, 1421 (1976)Google Scholar
  144. 122.
    Ide, T., Taki, S. and Takemura, T.: The high pressure and high temperature dilatometer. Japan. J. Appl. Phys. 16, 647 (1977)Google Scholar
  145. 123.
    Yasuniwa, M. and Takemura, T.: Microscopic observation of the crystallization process of polyethylene under high pressure. Polymer 15, 661 (1974)Google Scholar
  146. 124.
    Yamamoto, T.: Nature of disorder in the high pressure phase of polyethylene. J. Macromol. Sci.-Phys. B16, 487 (1979)Google Scholar
  147. 125.
    Tanaka, H. and Takemura, T.: Studies on the high-pressure phases of polyethylene and polytetrafluoroethylene by Raman spectroscopy. Polymer J. 12, 355 (1980)Google Scholar
  148. 126.
    Nagata, K., Tagashiva, K., Taki, S. and Takemura, T.: Ultrasonic study of high pressure phase in polyethylene. Japan. J. Appl. Physics 19, 985 (1981)Google Scholar
  149. 127.
    Starkweather, H. W.: A comparison of the rheological properties of polytetrafluoroethylene below its melting point with certain low-molecular weight smectic states. J. Polymer Sci., Polymer Phys. Ed. 17, 73 (1979)Google Scholar
  150. 128.
    Melillo, L. and Wunderlich, B.: Extended chain crystals VIII. Morphology of polytetrafluoroethylene. Kolloid Z. Z. Polymere 250, 417 (1972)Google Scholar
  151. 129.
    Bassett, D. and Davitt, R.: On the crystallization phenomena in polytetrafluorethylene. Polymer 15, 721 (1974)Google Scholar
  152. 130.
    Bates, T. W. and Stockmayer, W. H.: Conformational energies of perfluoroalkanes. III. Properties of polytetrafluoroethylene. Macromolecules 1, 17 (1968)Google Scholar
  153. 131.
    Natarajan, R. T. and Davidson, T.: Kinetics of the 20 °C phase transformation in polytetrafluoroethylene. J. Polymer Sci., Polymer Phys. Ed. 10, 2209 (1972)Google Scholar
  154. 132.
    Starkweather, Jr., H. W., Zoller, P., Jones, G. A. and Vega, A. J.: Heat of fusion of polytetrafluoroethylene. Proc. of the 11th NATAS Conference, New Orleans, LA (1981) pg. 361; see also J. Polymer Sci. Polymer Phys. Ed. 20, 751 (1982)Google Scholar
  155. 133.
    Marx, P. and Dole, M.: Specific heat of synthetic high polymers. V. A. study of the order-disorder transition in polytetrafluoroethylene. J. Am. Chem. Soc. 17, 4771 (1955)Google Scholar
  156. 134.
    Clark, E. S. and Muus, L. T.: Partial disordering and crystal transitions in polytetrafluoroethylene. Z. Krist. 117, 119 (1962); see also E. S. Clark, J. Makromol. Sci. Phys., B1, 795 (1967)Google Scholar
  157. 135.
    Mele, A., Site, A. D., Bettiniali, C. and DiDominico, A.: Thermoluminescence and phase transitions of irradiated fluorinated polymers. J. Chem. Phys. 49, 3297 (1968)Google Scholar
  158. 136.
    Gohil, R. M. and Petermann, J.: Chain conformational defects in polyvinylidene fluoride. Polymer 22, 1612 (1981); Takahashi, Y. and Tadokoro, H.: Formation mechanism of kink bands in modification II of poly(vinylidene fluoride). Evidence for flip-flop motion between TGT\(\bar G\)and T\(\bar G\)TG conformations. Macromolecules 13, 1316 (1980); Takahashi, Y., Tadokoro, H. and Odajima, A.: Kink bands in form I of poly(vinylidene fluoride). Macromolecules 13, 1318 (1980)Google Scholar
  159. 137.
    See for example Lovinger, A. J.: Annealing of poly(vinylidene fluoride) and formation of a fifth phase. Macromolecules 15, 40 (1982)Google Scholar
  160. 138.
    Hasegawa, R., Kobayashi, M. and Tadokoro, H.: Molecular conformation and packing of poly(vinylidene fluoride). Stability of three crystalline forms and the effect of high pressure, Polymer J. 3, 591 (1972); Hasegawa, R., Takahashi, Y., Chatani, Y. and Tadokoro, H.: Crystal structures of three crystalline forms of poly(vinylidene fluoride). Polymer J. 3, 600 (1972)Google Scholar
  161. 139.
    Miyamoto, Y., Nakafuku, C. and Takemura, T.: Crystallization of polychlorotrifluoroethylene. Polymer J. 3, 120 (1972)Google Scholar
  162. 140.
    Natta, G., Peraldo, M. and Corradini, P.: Modificazione mesomorfa smettica del polipropilene isotattico. Rend. Accad. Naz. Lincei, Vol. 24, 14 (1959)Google Scholar
  163. 141.
    Zannetti, R., Celotti, G. C., Fichera, A. and Francesconi, R.: The structural effects of annealing time and temperature on the paracrystal-crystal transition in isotactic polypropylene. Makromol. Chemie 128, 137 (1969)Google Scholar
  164. 142.
    Miller, R. L.: On the existence of near-range order in isotactic polypropylenes. Polymer 1, 135 (1960)Google Scholar
  165. 143.
    Corradini, P.: The stereochemistry of Macromolecules. Dekker, New York, NY Vol. 3, 1968Google Scholar
  166. 144.
    Fichera, A. and Zannetti, R.: Thermal properties of isotactic polypropylene quenched from the melt and annealed. Makromol. Chemie 176, 1885 (1975)Google Scholar
  167. 145.
    Nakafuku, C.: High pressure d.t.a. study on the melting and crystallization of isotactic polypropylene. Polymer 22, 1673 (1981)Google Scholar
  168. 146.
    Natta, G. and Corradini, P.: Conformation of linear chains and their mode of packing in the crystal state. J. Polymer Sci. 39, 29 (1959); see also Natta, G., Corradini, P. and Porri, D.: Rend. Accad. Nazl. Lincei 20, 728 (1956)Google Scholar
  169. 147.
    Iwayanagi, S. and Miura, J.: Nuclear magnetic resonance study of solid phase transition of trans-1,4-polybutadiene, Rept. Progr. Polymer Phys. Japan 8, 303 (1965)Google Scholar
  170. 148.
    Moraglio, G., Polizzotti, G. and Danusso, F.: Enantiotropic polymorphism of transtactic poly-1,3-butadiene, Europ. Polymer J. 1, 183 (1965)Google Scholar
  171. 149.
    Corradini, P.: On the chain conformation of the high temperature polymorph of trans-1,4-polybutadiene. Polymer Letters 7, 211 (1969); see also J. Polymer Sci., Symposia 50, 327 (1975)Google Scholar
  172. 150.
    Suehiro, K. and Takayanagi, N.: Structural studies of the high temperature form of trans-1,4-polybutadien crystal. J. Macromol. Sci. Phys. B4, 39 (1970)Google Scholar
  173. 151.
    Bautz, G., Leute, U., Dollhopf, W. and Haegele, P. C.: On the solid state phases of poly(trans-1,4-butadiene). Colloid and Polymer Sci. 259, 714 (1981)Google Scholar
  174. 152.
    Finter, J. and Wegner, G.: The relation between phase transition and crystallization behavior of 1,4-trans-poly(butadiene). Makromol. Chemie 182, 1859 (1981) (see here and Ref. 3 for older data)Google Scholar
  175. 153.
    Natta, G. and Corradini, P.: The crystal structure of cis-1,4-polybutadiene. Nuovo Cimento Suppl. 15, 111 (1960); see also Angew. Chemie 68, 615 (1956) and Nyburg, S. C.: Acta Cryst. 7, 385 (1954)Google Scholar
  176. 154.
    Edwards, B. C. and Phillips, P. J.: The structure of the high pressure phase of cis-polyisoprene. J. Mat. Sci. 10, 1233 (1975); see also J. Polymer Sci. B10, 321 (1972) and Polymer 15, 491 (1974)Google Scholar
  177. 155.
    Phillips, P. J. and Edwards, B. C.: High pressure phases in polymers. III. The nature of the high-pressure phase in cis-polyisoprene. J. Polymer Sci., Polymer Phys. Ed. 14, 377 (1976); see also ibid. 13, 1819, 2117 (1975) and 14, 391 (1976)Google Scholar
  178. 156.
    Rossem, A. van and Lotichius, J.: Das Einfrieren des Rohkautschuks. Kautschuk 5, 2 (1929); N. Bekkedahl, Forms of rubber as indicated by temperature-volume relationship, J. Res. Natl. Bur. Stand. 13, 411 (1934)Google Scholar
  179. 157.
    Lieser, G.: Polymer single crystals of poly(4-hydroxybenzoate). J. Polymer Sci., Polymer Phys. Ed., 21, 1611 (1983)Google Scholar
  180. 158.
    Gogolewski, S. and Pennings, A. J.: Crystallization of polyamides under elevated pressure. Nylon 6. Polymer 14, 463 (1973); see also 18, 647, 654 (1977)Google Scholar
  181. 159.
    Hiramatsu, N. and Hirakawa, S.: Melting and transformation behavior of gamma form Nylon 6 under high pressure. Polymer J. 14, 165 (1982)Google Scholar
  182. 160.
    Gogolewski, S.: A possible mechanism of chain extension in nylon-6 during crystallization under pressure. Polymer 18, 63 (1977)Google Scholar
  183. 161.
    Gogolewski, S. and Pennings, A. J.: Crystallization of polyamides under elevated pressure: 5 Pressure-induced crystallization from the melt and annealing of folded chain crystals of nylon-11, poly(aminoundecaneamide) under pressure, Polymer 18, 660 (1977); Stamhuis, J. E. and Pennings, A. J.: Crystallization of polyamides under elevated pressure: 6. Pressure-induced crystallization from the melt and annealing of folded chain crystals of nylon-12, polylaurolactam under pressure. Polymer 18, 667 (1977)Google Scholar
  184. 162.
    Hiramatsu, N., Hashida, S. and Hirakawa, S.: Formation of alpha form nylon 12 under high pressure. Japan. J. Appl. Phys. 21, 651 (1982)Google Scholar
  185. 163.
    Kast, W.: Die Molekel-Struktur der Verbindungen mit kristallin-fluessigen (mesomorphen) Schmelzen. Angew. Chemie 67, 592 (1955)Google Scholar
  186. 164.
    Siegmann, A. and Harget, P. J.: Melting and crystallization of poly(ethylene terephthalate) under pressure. J. Polymer Sci., Polymer Phys. Ed. 18, 2181 (1980)Google Scholar
  187. 165.
    Beatty, C. L., Pochnan, J. M., Froix, M. F. and Hinman, D. D.: Liquid crystalline type order in polydiethylsiloxane. Macromolecules 8, 547 (1975)Google Scholar
  188. 166.
    Pochan, J. M., Hinman, D. F. and Froix, M. F.: Morphological studies on the viscous crystalline phase of poly(diethylsiloxane) including the dynamics of phase formation and the relationship of viscous crystalline structure and crystalline structure. Macromolecules 9, 611 (1976)Google Scholar
  189. 167.
    Beatty, C. L. and Karasz, F. E.: Transitions in poly(diethyl siloxane). J. Polymer Sci., Polymer Phys. Ed. 13, 971 (1975); see also Pochnan, J. M., Beatty, C. L., Hinman, D. D. and Karasz, F. E.: ibid. 977Google Scholar
  190. 168.
    Froix, M. F., Beatty, C. L., Pochnan, J. M. and Hinman, D. D.: Nuclear spin relaxation in poly(diethylsiloxane). J. Polymer Sci., Polymer Phys. Ed. 13, 1269 (1975)Google Scholar
  191. 169.
    Singler, R. E., Schneider, N. S., Hagnamer, G. L.: Polyphosphazenes: Synthesis-properties-applications. Polymer Eng. Sci. 15, 321 (1975)Google Scholar
  192. 170.
    Schneider, N. S., Desper, C. R., Singler, R. E.: The Thermal transition behavior of polyorganophosphazenes. J. Appl. Polymer Sci. 20, 3087 (1976)Google Scholar
  193. 171.
    Grossmann, H.-P.: Investigation of conformational transitions in cycloalkanes. Polymer Bulletin 5, 137 (1981)Google Scholar
  194. 172.
    Mueller, A.: An X-ray investigation of normal paraffins near their melting points. Proc. Roy. Soc. A. 138, 514 (1932)Google Scholar
  195. 173.
    For a summary see Ewen, B., Strobl, G. R. and Richter, D.: Phase transitions in crystals of chain molecules. Disc. Farad. Soc. 69, 19 (1980)Google Scholar
  196. 174.
    Strobl, G. R.: Molecular motion, thermal expansion, and phase transitions in paraffins: A model for polymers. J. Polymer Sci. Polymer Symposium 59, 121 (1977); see also Colloid Polymer Sci. 254, 170 (1976)Google Scholar
  197. 175.
    Takamizawa, K., Ogawa, Y. and Oyama, T.: Thermal behavior of n-alkanes synthesized with attention paid to high purity. Polymer J. 14, 441 (1982)Google Scholar
  198. 176.
    Strobl, G., Ewen, B., Fischer, E. W. and Piesczek, W.: Defect structure and molecular motion in the four modifications of n-tritriacontane. J. Chem. Phys. 61, 5257, 5265 (1974)Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Bernhard Wunderlich
    • 1
  • Janusz Grebowicz
    • 1
  1. 1.Department of ChemistryRensselaer Polytechnic Institute TroyUSA

Personalised recommendations