Optimized combinatoric code for applicative language implementation

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 167)


Recursive Call Abstract Interpretation High Order Function Free List Combinatoric Code 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

10. Bibliography

  1. [Bac78]
    Backus, J., Can Programming Be Liberated from the von Neumann Style? A Functional Style and Its Algebra of Programs, Comm. ACM 21, 8 (Aug. 1978), 613–641.CrossRefGoogle Scholar
  2. [Bur82]
    Burton, F. W., A Linear Space Translation of Functional Programs to Turner Combinators, Inf. Proc. Lett. 14, 5 (Jul. 1982), 201–204.Google Scholar
  3. [CoC77]
    Cousot, P. and Cousot, R., Abstract Interpretation: a Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixed Points, in Proc. 4th. ACM Symp. on Princ. Prog. Lang., ACM, Los Angeles, 1977.Google Scholar
  4. [CFC58]
    Curry, H. B., Feys, R. and Craig, W., Combinatory Logic, Vol. I, North Holland, Amsterdam, 1958.Google Scholar
  5. [FrW76]
    Friedman, D. P. and Wise, D. S., CONS Should not Evaluate its Arguments, in 3rd. Intl. Coll. in Autom. Lang. & Programming, Edinburgh, Jul. 1976, 257–284.Google Scholar
  6. [GMW77]
    Gordon, M., Milner, R. and Wadsworth, C., Edinburgh LCF, CSR-11-77, Parts I and II, Dep. Comp. Sci, University of Edinburgh, Edinburgh, Scotland, 1977.Google Scholar
  7. [Hug82]
    Hughes, R. J. M., Super Combinators: A New Implementation Method for Applicative Languages, in Conf. Record of the 1982 ACM Symp on LISP and Funct. Prog., ACM, Pittsburgh, PA, 15–18 Aug. 1982, 1–10.Google Scholar
  8. [JoM82]
    Jones, N. D. and Muchnick, S. S., A Fixed-Program Machine for Combinator Expression Evaluation, in Conf. Record of the 1982 ACM Symp on LISP and Funct. Prog., ACM, Pittsburgh, PA, 15–18 Aug. 1982, 11–20.Google Scholar
  9. [Jon81]
    Jones, N. D., Flow Analysis of Lambda Expressions, DAIMI PB-128, Comp. Sci. Dept., Aarhus Univ., Aarhus, Denmark, Jan. 1981.Google Scholar
  10. [Mei83a]
    Meira, S., The Kent Recursive Calculator (KRC): Syntax and Semantics, unpublished, Canterbury, U. K., 1983.Google Scholar
  11. [Mei83b]
    Meira, S., Abstract Interpretation Methods for Optimization of Combinatoric Code, in preparation, Computing Laboratory, University of Kent, Canterbury, U. K., 1983.Google Scholar
  12. [Myc81]
    Mycroft, A., Abstract Interpretation and Optimising Transformations for Applicative Programs, Ph. D. Thesis, Dep. of Comp. Sci., Univ. of Edinburgh, Edinburgh, 1981.Google Scholar
  13. [Nie82]
    Nielson, F., A Denotational Framework for Data Flow Analysis, Acta Informatica 18, 3 (1982), 265–288.Google Scholar
  14. [Pet78]
    Pettorossi, A., Improving Memory utilization in Transforming Recursive Programs, in Math. Found. of Comp. Sci. 1978, J. Winkowski, ed., Springe Verlag, Zakopane, Poland, 1978, 416–425.Google Scholar
  15. [Sch77]
    Schonfinkel, M., On The Building Blocks of Mathematical Logic, in From Frege to Godel — A Source Book in Mathematical Logic, 1879–1931, J. van Heijenoort, ed., Harvard Univ. Press, Cambridge, Mass, 1977.Google Scholar
  16. [Tur79a]
    Turner, D. A., A New Implementation Technique for Applicative Languages, Soft. Pract. and Exp. 9, (1979), 31–49.Google Scholar
  17. [Tur79b]
    Turner, D. A., SASL Language Manual, Comp. Lab. Report, University of Kent, Canterbury, 1979.Google Scholar
  18. [Tur82]
    Turner, D. A., Recursion Equations as a Programming Language, in Functional Programming and its Applications, An Advanced Course, C. U. P., Cambridge, UK, 1982.Google Scholar
  19. [Tur79]
    Turner, D. A., Another Algorithm for Bracket Abstraction, J. Sym. Log. 44, 2 (Jun. 1979), 267–270.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1984

Authors and Affiliations

  1. 1.Universidadc Federal de PernambucoRecifeBrazil
  2. 2.University of Kent at CanterburyUK

Personalised recommendations