The nucleon-nucleon interaction in the quark model

  • Amand Faessler
Chaptyer 5. The Nucleon-Nucleon Interaction from Quark Theory
Part of the Lecture Notes in Physics book series (LNP, volume 197)


The nucleon-nucleon interaction is calculated starting from quarks and gluons and the interaction determined by QCD. The short range part is determined by quark and gluon exchange, while the long range part is calculated by allowing π and σ meson exchange between the quarks. The parameters of the model are adjusted to the nucleon mass, the Δ mass and the charge root mean square radius of the proton (including the pion cloud). The π and σ quark-quark coupling constants are adjusted to the known meson proton coupling. Using the resonating group method the 3S and 1S phase shifts are calculated in surprisingly good agreement with the data.


Quark Model Hard Core Meson Exchange Orbital Symmetry Short Range Repulsion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    G.E. Brown, A.D. Jackson, “The Nucleon-Nucleon Interaction (North-Holland), Amsterdam (1976).Google Scholar
  2. 2).
    K. Erkelenz, Phys. Rep. 13 (1974) 191.Google Scholar
  3. 3).
    K. Holinde, Phys. Rep. 68C (1981) 121.Google Scholar
  4. 4).
    K. Holinde, R. Machleidt, M.R. Anastasio, A. Faessler, H. Mother, Phys. Rev. C19 (1979) 948.Google Scholar
  5. 5).
    R. Liberman, Phys. Rev. D16 (1977) 1542.Google Scholar
  6. 6.
    De Tar, Phys. Rev. D17 (1978) 326.Google Scholar
  7. 7).
    K. Wildermuth, Y.C. Tang “A Unified Theory of the Nucleus”, Vieweg, Braunschweig (1977).Google Scholar
  8. 8).
    K. Holinde, R. Machleidt, Nucl. Phys. A256 (1976) 479.Google Scholar
  9. 9).
    A. De Rujula, H. Georgi, S.L. Glashow, Phys. Rev. D12, (1975) 147.Google Scholar
  10. 10).
    V.G. Neudatschin, I.T. Obukhovsky, V.I. Kukulin, N.F. Golovanova, Phys. Rev. C11, (1975) 128.Google Scholar
  11. 11).
    V.G. Neudatschin, Yu.F. Smirnov, R. Tamagaki, Prog. Theor. Phys. 58 (1977) 1072.Google Scholar
  12. 11a).
    I.T. Obukhovsky, V.G. Neudatschin, Yu.F. Smirnov, Yu.M. Tschuvil'sky, Phys. Lett. 88B (1979) 231.Google Scholar
  13. 12).
    M. Harvey, Nucl. Phys. A352 (1981) 301 and 326.Google Scholar
  14. 13).
    A. Faessler, F. Fernandez, G. Lübeck, K. Shimizu, Phys. Lett. 112B (1982) 201.Google Scholar
  15. 14).
    A. Faessler, F. Fernandez, Phys. Lett. 124B (1983) 145.Google Scholar
  16. 15).
    A. Faessler, F. Fernandez, J. Phys. G9, (1983) L39 and 471.Google Scholar
  17. 16).
    S. Furui, A. Faessler, Nucl. Phys. A397 (1932) 413.Google Scholar
  18. 17).
    M. Harvey, Proc. Int. Symposium on Clustering Phenomena in Nuclei. Page 179. Eds. P. Kramer, R. Schultheis, Attempto Verlag, Tübingen (1982).Google Scholar
  19. 18).
    K. Kamimura, Prog. Theor. Phys. 62 (1977) 236.Google Scholar
  20. 19).
    R. Tegen, R. Brockmann, W. Weise, Z. Phys. A307 (1982) 339.Google Scholar
  21. 20).
    W. Weise, Proceedings of the 5th Topical School, Motril (Granada), Spain, Sept. 6–10, 1982, to be published.Google Scholar
  22. 21).
    R. Arndt and coworkers, Phys. Rev. C15 (1977) 1002.Google Scholar
  23. 22).
    R. Arndt, Proceedings of the Conference on Nucleon-Nucleon Interaction, Vancouver, p. 117 (1977).Google Scholar
  24. 23).
    G. Höhler and coworkers, Nucl. Phys. B114 (1975) 505.Google Scholar
  25. 24).
    M. Oka, K. Yazaki, Phys. Lett. 90B (1980) 41 and Prog. Theor. Phys. 66 (1981) 556 and 572.Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • Amand Faessler
    • 1
  1. 1.Institut für Theoretische PhysikUniversität TübingenTübingenWest-Germany

Personalised recommendations