Finite temperature QCD

  • J. Engels
Chapter 1. Hadrons from Quantum Chromodynamical Lattice Approximation
Part of the Lecture Notes in Physics book series (LNP, volume 197)


A review of finite temperature lattice calculations for quantum chromodynamics is given. We show how the thermodynamic quantities can be evaluated by Monte Carlo methods, once finite temperature field theory has been formulated on a lattice. The existing results for chemical potential zero and in quenched approximation are discussed. They exhibit a clear first order transition for SU(3) lattice QCD and probably a second order transition for SU(2) lattice QCD. The chiral and deconfinement transitions are coinciding in the quenched approximation.


Monte Carlo Chiral Symmetry Order Transition Wilson Fermion Chiral Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1).
    E.V. Shuryak, Phys. Reports 61 (1980) 71Google Scholar
  2. 1a).
    D.J. Gross, R.D. Pisarski and L.G. Yaffe, Rev. Mod. Phys. 53 (1981) 43Google Scholar
  3. 1b).
    H. Satz, Proc. 5th High energy heavy ion study, Berkeley/Cal. 1981.Google Scholar
  4. 2).
    G. Baym, Proc. of the Bielefeld Workshop 1982, H. Satz and J. Jacob eds., World Scientific, Singapore, 1982.Google Scholar
  5. 3).
    M. Creutz, Phys. Rev. D21 (1980) 2308; Phys. Rev. Lett. 45 (1980) 313.Google Scholar
  6. 4).
    L. McLerran and B. Svetitsky, Phys. Lett. 98B (1981) 195Google Scholar
  7. 4a).
    J. Kuti, J. Polónyi and K. Szlachányi, Phys. Lett. 98B (1981) 199Google Scholar
  8. 4b).
    J. Engels, F. Karsch, I. Montvay and H. Satz, Phys. Lett. 101B (1981) 89.Google Scholar
  9. 5).
    K. Kajantie, C. Montonen and E. Pietarinen, Z. Phys. C9 (1981) 253.Google Scholar
  10. 6).
    I. Montvay and E. Pietarinen, Phys. Lett. 110B (1982) 148; 115B (1982) 151.Google Scholar
  11. 7).
    J. Engels, F. Karsch, I. Montvay and H. Satz, Nucl. Phys. B205 [FS5] (1982) 545.Google Scholar
  12. 8).
    J. Engels and F. Karsch, Phys. Lett. 125B (1983) 481.Google Scholar
  13. 9).
    J. Kogut et al., Phys. Rev. Lett. 50 (1983) 393.Google Scholar
  14. 10).
    T. Çelik, J. Engels and H. Satz, Phys. Lett. 125B (1983) 411; 129B (1983) 323.Google Scholar
  15. 11).
    J. Kogut et al., Phys. Rev. Lett. 51 (1983) 869.Google Scholar
  16. 12).
    J. Kogut et al., Illinois preprint ILL-(TH)-83-10, April 1983.Google Scholar
  17. 13).
    C.B. Lang and H. Nicolai, Nucl. Phys. B200 [FS4] (1982) 135.Google Scholar
  18. 14).
    J. Engels, F. Karsch and H. Satz, Phys. Lett. 113B (1982) 398.Google Scholar
  19. 15).
    C. Bernard, Phys. Rev. D9 (1974) 3312.Google Scholar
  20. 16).
    K. Wilson, Phys. Rev. D10 (1974) 2445; in “New Phenomena in Subnuclear Physics”, ed. A. Zichichi, Plenum Press, New York 1977 (Erice 1975)Google Scholar
  21. 17).
    A. Hasenfratz and P. Hasenfratz, Nucl. Phys. B193 (1981) 210.Google Scholar
  22. 18).
    T. Matthews and A. Salam, Nuovo Cim. 12 (1954) 563; 2 (1955) 120.Google Scholar
  23. 19).
    H. Hamber and G. Parisi, Phys. Rev. Lett. 47 (1981) 1792Google Scholar
  24. 19a).
    E. Marinari, G. Parisi and C. Rebbi, Phys. Rev. Lett. 47 (1981) 1795Google Scholar
  25. 19b).
    D. Weingarten, Phys. Lett. 109B (1982) 57.Google Scholar
  26. 20).
    F. Karsch, Nucl. Phys. B205 [FS5] (1982) 285.Google Scholar
  27. 21).
    F. Gutbrod, P. Hasenfratz, Z. Kunszt and I. Montvay, LERN preprint TH 3591, May 1983.Google Scholar
  28. 22).
    A. Hasenfratz and P. Hasenfratz, Phys. Lett. 104B (1981) 489.Google Scholar
  29. 23).
    A. Hasenfratz, P. Hasenfratz, Z. Kunszt and C.B. Lang, Phys. Lett. 110B (1982) 289.Google Scholar
  30. 24).
    P. Hasenfratz, F. Karsch and 1.0. Stamatescu, CERN preprint TH 3636 (1983).Google Scholar
  31. 25).
    T. Çelik, J. Engels and H. Satz, Bielefeld preprint BI-TP 83/15, August 1983 (Phys. Lett. in press).Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • J. Engels
    • 1
  1. 1.Fakultät für PhysikUniversität BielefeldGermany

Personalised recommendations