Stress tensors, Riemannian metrics and the alternative descriptions in elasticity

  • J. C. Simo
  • J. E. Marsden
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 195)


Polar Decomposition Spatial Picture Rate Constitutive Equation Covariance Assumption Finite Deformation Plasticity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. ABRAHAM, R., J.E. MARSDEN & T. RATIU, 1983. Manifolds, Tensor Analysis and Applications, Reading, MA: Addison-Wesley Publishing Co.MATHGoogle Scholar
  2. COLEMAN, B.D., and W. NOLL, 1959. “On the Thermodynamics of Continuous Media,” Arc. Rat. Mech. An., 4, pp.97–128.CrossRefMATHGoogle Scholar
  3. DOYLE, T. C. and J. L. ERICKSEN, 1956. Nonlinear Elasticity, in Advances in Applied Mechanics IV. New York: Academic Press, Inc.Google Scholar
  4. GREEN, A.E. and B.C. McINNIS, 1967. “Generalized Hypo-Elasticity,” Proc. Roy. Soc. Edinburgh, A57, 220.MATHMathSciNetGoogle Scholar
  5. GREEN, A.E. and R.S. RIVLIN, 1964a. “On Cauchy's Equations of Motion,” J. Appl. Math, and Physics (ZAMP), 15, pp.290–292.CrossRefMATHMathSciNetGoogle Scholar
  6. KEY, S.W. & R.D. KRIEG, 1982. “On the Numerical Implementation of Inelastic Time Dependent and Time Independent, Finite Strain Constitutive Equations in Structural Mechanics,” Comp. Meth. Appl, Mech, Engn., 33, pp.439–452.CrossRefMATHMathSciNetGoogle Scholar
  7. LANG, S., 1972. Differential Manifolds, Reading, MA: Addison-Wesley Publishing Co. Inc.MATHGoogle Scholar
  8. MARSDEN, J.E. and T.J.R. HUGHES, 1983. Mathematical Foundations of Elasticity, Englewood-Cliffs, NY: Prentice-Hall, Inc.MATHGoogle Scholar
  9. MARSDEN, J.E., T. RATIU, and A. WEINSTEIN, 1982. “Semidirect Products and Reduction in Mechanics,” Trans. Am. Math. Soc., (to appear).Google Scholar
  10. NOLL, W., 1963. La Methode Axiomatique dans les Mecaniques Classiques et Nouvelles, Paris, pp.47–56.Google Scholar
  11. SIMO, J.C. & J.E. MARSDEN, 1964. “On the Rotated Stress Tensor and the Material Version of the Doyle-Ericksen Formula,” Arc. Rat. Mech. An., (To appear)Google Scholar
  12. SIMO, J.C., & K.S. PISTER, 1984. “Remarks on Rate Constitutive Equations for Finite Deformation Problems,” (Preprint)Google Scholar
  13. TOUPIN, R.A., 1964. “Theories of Elasticity'with Couple Stress,” Arc. Rat. Mech, An., 11, pp.385–414.CrossRefMathSciNetGoogle Scholar
  14. TRUESDELL, C. 1955. “Hypo-elasticity,” J. Rational Mechanics Mech. Anal., 4, pp.83–133.MATHMathSciNetGoogle Scholar
  15. TRUESDELL, C. and W. NOLL, 1965. The Non-Linear Field Theories of Mechanics, in Handbuch der Physik, Vol.III/3, S. Flugge, ed., Berlin: Spring-Verlag.Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • J. C. Simo
    • 1
  • J. E. Marsden
    • 1
    • 2
  1. 1.University of CaliforniaBerkeleyUSA
  2. 2.Dept. of Mathematics, UCBBerkeleyUSA

Personalised recommendations