Advertisement

Some viscous-dominated flows

  • W. G. Pritchard
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 195)

Keywords

Reynolds Number Free Surface Velocity Field Unbounded Domain Attachment Point 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AMICK, C.J. 1977 Steady solutions of the Navier-Stokes equations in unbounded channels and pipes. Ann. Scuola Norm. Sup. Pisa, IV, 4, 473.MATHMathSciNetGoogle Scholar
  2. AMICK, C.J. 1978 Properties of steady Navier-Stokes solutions for certain unbounded channels and pipes. Nonl. Anal., Theory, Methods and Applics, 2, 689.CrossRefMATHMathSciNetGoogle Scholar
  3. AMICK, C.J. & FRAENKEL, L.E. 1980 Steady solutions of the NavierStokes equations representing plane flow in channels of various types. Acta Mathematica, 144, 83.CrossRefMATHMathSciNetGoogle Scholar
  4. BEALE, J.T. 1981 The initial value problem for the Navier-Stokes equations with a free surface. Comm. on Pure & Appl. Math., 34, 359.CrossRefMATHMathSciNetGoogle Scholar
  5. BEALE, J.T. 1982 Large time regularity of viscous surface waves. Preprint.Google Scholar
  6. BERCOVIER, M. & PIRONNEAU, O. 1979 Error estimates for the finite element method solution of the Stokes problem in primative variables. Numer. Math. 33, 211.CrossRefMATHMathSciNetGoogle Scholar
  7. BONA, J.L., PRITCHARD, W.G. & SCOTT, L.R. 1980 Solitary-wave interaction. Physics of Fluids, 23, 438.ADSCrossRefMATHGoogle Scholar
  8. BONA, J.L., PRITCHARD, W.G. & SCOTT, L.R. 1981 An evaluation of a model equation for water waves. Phil. Trans. Roy. Soc. Lond. A, 302, 457.ADSCrossRefMATHMathSciNetGoogle Scholar
  9. CIARLET, P.G. 1978 The finite element method for elliptic problems. North Holland, Amsterdam.MATHGoogle Scholar
  10. CROUZEIX, M. & RAVIART, P.-A. 1973 Conforming and non-conforming finite element methods for solving the stationary Stokes equations I. R.A.I.R.O., R3, 33.CrossRefMATHGoogle Scholar
  11. DUTTA, A. & RYAN, M.E. 1982 Dynamics of a creeping Newtonian jet with gravity and surface tension: a finite difference technique for solving steady free-surface flows using orthogonal curvilinear coordinates. A.I.Ch.E.J., 28, 220.CrossRefGoogle Scholar
  12. FLORNBERG, B. 1980 A numerical study of steady viscous flow past a circular cylinder. J. Fluid Mech., 98, 819.ADSCrossRefGoogle Scholar
  13. GLOWINSKI, R., MANTEL, B. & PERIAUX, J. 1981 Numerical solution of the time dependent Navier-Stokes equations for incompressible viscous fluids by finite element and alternating direction methods. Proceedings of the conference on numerical methods in aeronautical fluid dynamics, Reading.Google Scholar
  14. JEAN, M. 1980 Free surface of the steady flow of a Newtonian fluid in a finite channel. Arch. Ratl. Mech. Anal., 74, 197.CrossRefMATHMathSciNetGoogle Scholar
  15. JEAN, M. & PRITCHARD, W.G. 1980 The flow of fluids from nozzles at small Reynolds numbers. Proc. Roy. Soc. Lond. A, 370, 61.ADSCrossRefGoogle Scholar
  16. LANDAU, L.D. & LIFSHITZ, E.M. 1959 Fluid Mechanics. Pergamon, Oxford.MATHGoogle Scholar
  17. MAJDA, A.J. & BEALE, J.T. 1982 The design and numerical analysis of vortex methods. In Transonic, Shock and Multidimensional flows advances in scientific computing (p 329) Ed.: Meyer, R.E. Academic, New York.CrossRefGoogle Scholar
  18. NICKELL, R.E., TANNER, R.I. & CASWELL, B. 1974 The solution of viscous incompressible jet and free-surface flows using finiteelement methods. J. Fluid Mech., 65, 189.ADSCrossRefMATHGoogle Scholar
  19. OMODEI, B.J. 1980 On the die-swell of an axisymmetric Newtonian jet. Computers & Fluids, 8, 275.ADSCrossRefMATHGoogle Scholar
  20. RICHARDSON, S. 1970 A 'stick-up’ problem related to the motion of a free jet at low Reynolds numbers. Proc. Camb. Phil. Soc., 67, 477.ADSCrossRefMATHGoogle Scholar
  21. SCHMIDT, D. 1980 Numerische Approximation der stationären NavierStokes-Gleichung mit nichtkonformen finiten Elementen. Diplomarbeit, Bonn.Google Scholar
  22. SILLIMAN, W.J. & SCRIVEN, L.E. 1980 Separating flow near a static contact line: slip at a wall and shape of a free surface. J. Comp. Phys., 34, 287.ADSCrossRefMATHMathSciNetGoogle Scholar
  23. SOLONNIKOV, V.A. & SCADILOV, V.E. 1973 On a boundary value problem for a stationary system of Navier-Stokes equations. Proc. Steklov Inst. Math., 125, 186.MATHMathSciNetGoogle Scholar
  24. SOLONNIKOV, V.A. 1980 Solvability of a problem on the plane motion of a heavy viscous incompressible capillary liquid partially filling a container. Math. USSR, Izvestia 14, 193.ADSCrossRefMATHGoogle Scholar
  25. TAYLOR, C. & HOOD, P. 1973 A numerical solution of the Navier-Stokes equations using the finite element technique. Computers & Fluids, 1, 73.CrossRefMATHMathSciNetGoogle Scholar
  26. TEMAM, R. 1979 Navier-Stokes equations. North Holland, Amsterdam.MATHGoogle Scholar
  27. THOMASSET, F. 1981 Implementation of finite element methods for Navier-Stokes equations. Springer Verlag.Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • W. G. Pritchard
    • 1
  1. 1.Department of MathematicsUniversity of EssexEssexEngland

Personalised recommendations