On a class of live traction problems in elasticity

  • P. Podio-Guidugli
  • G. Vergara-Caffarelli
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 195)


Elasticity Tensor Live Load Surface Traction Strong Ellipticity Traction Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1,2]
    S. AGMON, A. DOUGLIS & L. NIRENBERG, Estimates near the boundary for solutions of partial differential equations,I and II, Comm. Pure Appl. Math. 12, pp. 623–727 (1959) and 17, pp. 35-92 (1964).CrossRefMATHMathSciNetGoogle Scholar
  2. [3]
    J.L. THOMPSON, Some existence theorems for the traction boundary value problem of linearized elastostatics. Arch. Rational Mech. Anal. 32, pp. 369–399 (1969).ADSCrossRefMATHMathSciNetGoogle Scholar
  3. [4]
    G. CAPRIZ & P. PODIO-GUIDUGLI, Duality and stability questions for the linearized traction problem with live loads in elasticity. In Stability in the Mechanics of continua, F.H. Schroeder Ed.-Springer-Verlag Berlin-Heidelberg, New York, (1982).Google Scholar
  4. [5]
    P. PODIO-GUIDUGLI, forthcoming (1983).Google Scholar
  5. [6]
    M.E. GURTIN & S.J. SPECTOR, On stability and uniqueness in finite elasticity. Arch. Rational Mech. Anal. 70, pp. 153–165 (1979).ADSCrossRefMATHMathSciNetGoogle Scholar
  6. [7]
    W. NOLL, What is a “well-posed” problem in finite elasticity ? Italian-American Symposium on Existence and Stability in Elasticity, Udine, Italy, (1971).Google Scholar
  7. [8]
    P. Podio-guidugli, Elastic bodies in a Signorini-type environment. In Contemporary Developments in Continuum Mechanics and Partial Differential Equations, G.M. de la Penha & L.A. Medeiros Ed.s-North-Holland Pub. Co., (1978).Google Scholar
  8. [9]
    S.J. SPECTOR, On uniqueness in finite elasticity with general loading. J. Elasticity 10, pp. 145–161 (1980).CrossRefMATHMathSciNetGoogle Scholar
  9. [10]
    S.J. SPECTOR, On uniqueness for the traction problem in finite elasticity. J.Elasticity 12, pp. 367–383 (1982).CrossRefMATHMathSciNetGoogle Scholar
  10. [11]
    R.J. KNOPS & E.W. WILKES, Theory of Elastic Stability. In PH VI a/3, C. Truesdell Ed. Springer-Verlag Berlin-Heidelberg, New York, (1973). *** DIRECT SUPPORT *** A3418152 00007Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • P. Podio-Guidugli
    • 1
  • G. Vergara-Caffarelli
    • 2
  1. 1.Istituto di Scienza d. Costruzioni Facoltà di IngegneriaUniversità di PisaPisaItaly
  2. 2.Dipartimento di Matematica Facoltà di Scienze M.F.N.Università di PisaPisaItaly

Personalised recommendations