Advertisement

Linear problems associated to the theory of elastic continua with finite deformations

  • G. Grioli
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 195)

Keywords

Linear Problem Heat Conduction Equation Rigid Motion Reference Configuration Finite Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Signorini, A. “Sulle deformazioni termoelastiche finite” Proc. 3rd Int. Congr. Appl. Mech. 2, 80–89 (1930).MATHGoogle Scholar
  2. [2]
    Signorini, A. “Transformazioni termoelastiche finite” Ann. Mat. Pura e Applicata, IV, 30, 1–72 (1949).CrossRefMATHGoogle Scholar
  3. [3]
    Stoppelli, F. “Sulla sviluppabilità in serie di potenze di un parametro delle soluzioni delle equazioni dell'elastostatica isoterma” Ricerche Mat, 4, 58–73 (1955).MATHMathSciNetGoogle Scholar
  4. [4]
    Truesdell, C., Noll, W. “The non-linear Field Theories of Mechanics”, Encyclopedia of Physics, Vol. 111/3. Springer (1965).Google Scholar
  5. [5]
    Capriz, G., Podio Guidugli, P. “On Signorini's perturbation method in finite elasticity” Arch. Rational Mech, An. 57, 1–30 (1974).MATHMathSciNetGoogle Scholar
  6. [6]
    Tolotti, C. “Orientamenti principali di un corpo elastico rispetto alla sua sollecitazione totale” Mem. Accad. Italia, C. Sci. Mat. Nat. VII, 13, 1139–1162 (1945).MATHMathSciNetGoogle Scholar
  7. [7]
    Grioli, G. “Mathematical Theory of Elastic Equilibrium (Recent Results)” Springer-Verlag (1962).Google Scholar
  8. [8]
    Bharatha, S., Levinson, M. “Signorini's Perturbation Scheme for a General Reference Configuration in Finite Elastostatics” Arch. Rational Mech. An. 1, 365–394 (1977).MATHGoogle Scholar
  9. [9]
    Capriz, G., Podio Guidugli, P. “The role of Fredholm conditions in Signorini's perturbation method” Arch. Rational Mech. An. 70, 261–288 (1979).CrossRefMATHMathSciNetGoogle Scholar
  10. [10]
    Brilla, J. “The compatible perturbation method in finite viscoelasticity” Symposium at Kozubnik, Poland, Pitman (1977).MATHGoogle Scholar
  11. [11]
    Grioli, G. “On the stress in rigid bodies”,Meccanica (Pitagora Editrice Bologna) 18, 3–7 (1983).CrossRefMATHGoogle Scholar
  12. [12]
    Grioli, G. “Mathematical Problems in Elastic Equilibrium with Finite Deformations” Applicable Analysis (1983).Google Scholar
  13. [13]
    Stoppelli, F. “itUn teorema di esistenza ed unicità relativo alle equazioni dell'elastostatica isoterma per deformazioni finite” Ricerche Mat. 3, 247–267 (1954).MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • G. Grioli
    • 1
  1. 1.Seminario MatematicoUniversità di PadovaPadovaItaly

Personalised recommendations