Advertisement

Existence problems of the non-linear Boltzmann equation

  • W. Fiszdon
  • M. Lachowicz
  • A. Palczewski
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 195)

Keywords

Cauchy Problem Boltzmann Equation Global Solution Mild Solution Specular Reflection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Arkeryd — On the Boltzmann equation, Arch. Rat. Mech. Anal. 45 (1975) 1–34.MATHGoogle Scholar
  2. L. Arkeryd — An existence theorem for a modified space-inhomogeneous nonlinear Boltzmann equation, Bull. Amer. Math. Soc. 78 (1972a), 610–614.CrossRefMathSciNetGoogle Scholar
  3. L. Arkeryd — Intermolecular forces of infinite range and the Boltzmann equation, Arch. Rat. Mech. Anal. 77 (1981), 11–21.CrossRefMATHMathSciNetGoogle Scholar
  4. L. Arkeryd — Asymptotic behaviour of the Boltzmann equation with infinite range forces, Comm. Math. Physics 86 (1982), 475–484.ADSCrossRefMATHMathSciNetGoogle Scholar
  5. L. Arkeryd — L estimates for the space-homogeneous Boltzmann equation, J. Stat. Phys. 31 1983), 347–361.ADSCrossRefMATHMathSciNetGoogle Scholar
  6. K. Asano — Local solutions to the initial and initial boundary value problem for the Boltzmann equation with an external force. Preprint 1982.Google Scholar
  7. H.K. Babovsky — Randbedingungen in der Kinetischen Theorie and Lösungen der Boltzmann-Gleichung, Ph.D. Thesis, Kaiserslautern 1982.Google Scholar
  8. R.E. Caflisch — The Boltzmann equation with a soft potential, Commun. Math. Phys. 74 (1980), 71–109.ADSCrossRefMATHGoogle Scholar
  9. R.E. Caflisch — The fluid dynamic limit of the nonlinear Boltzmann equation, Comm. Pure Appl. Math. 33 (1980a), 651–666.ADSCrossRefMATHMathSciNetGoogle Scholar
  10. R.E. Caflisch — Fluid dynamics and the Boltzmann equation, in Nonequilibrium Phenomena I, Eds. J.L. Lebowitz and E.W. Montroll, North Holland 1983.Google Scholar
  11. T. Carleman — Sur la théorie de l'equation integro-differentielle de Boltzmann, Acta. Math. 60 (1933), 91–140.CrossRefMATHMathSciNetGoogle Scholar
  12. T. Carleman — Problèmes mathématiques dans la théorie cinétique des gaz, Upsala 1957.Google Scholar
  13. C. Cercignani — On Boltzmann equation with cut-off potentials, Phys. Fluids 10, 10 (1967), 2097–2104.ADSCrossRefGoogle Scholar
  14. C. Cercignani — Theory and Application of the Boltzmann Equation. Scottish Academic Press 1975.Google Scholar
  15. C. Cercignani, W. Greenberg, P.F. Zweifel — Global solutions of the Boltzmann equation on a lattice, J. Stat. Phys. 20 (1979), 449–462.ADSCrossRefMathSciNetGoogle Scholar
  16. G. DiBlasio — Approach to equilibrium for spatially homogeneous solutions of the Boltzmann equation, Nonlinear Anal. 2 (1978), 739–752.CrossRefMathSciNetGoogle Scholar
  17. H.B. Drange — The linearized Boltzmann collision operator for cut-off potentials, SIAM J. Appl. Math. 29 (1975), 665–676.CrossRefMATHMathSciNetGoogle Scholar
  18. T. Elmroth — On the H-function and convergence towards equilibrium for a space-homogeneous molecular density, Chalmers University, Dept. of Math., Rept. 14 (1982).Google Scholar
  19. T. Elmroth — Global boundedness of moments of solution of the Boltzmann equation for infinite range forces, Arch. Rat. Mech. Anal. 82 (1983), 1712.CrossRefMATHMathSciNetGoogle Scholar
  20. M.H. Ernst — Nonlinear model — Boltzmann equations and exact solutions, Phys. Reports 78 (1981), 1–171.ADSCrossRefMathSciNetGoogle Scholar
  21. A.N. Firsov — On a Cauchy problem for the nonlinear Boltzmann equation (in Russian). Aerodyn. Rarefied Gases. (Leningrad) 9 (1976), 22–37.Google Scholar
  22. A. Glikson — On the existence of general solutions of the initial-value problem for the nonlinear Boltzmann equation with a cut-off. Arch. Rat. Mech. Anal. 45 (1972), 35–46. On solution of the nonlinear Boltzmann equation with a cut-off in an unbounded domain, ibid. 47 (1972), 389–394.CrossRefMathSciNetGoogle Scholar
  23. A. Glikson — Theory of existence and uniqueness for the nonlinear Maxwell-Boltzmann equation, Bull. Australian Math. Soc. 16 (1977), 379–414.CrossRefMATHMathSciNetGoogle Scholar
  24. P. Gluck — Solutions of the Boltzmann equation, Transport Theory and Statistical Physics, 9 (1980), 43–51.ADSCrossRefMATHMathSciNetGoogle Scholar
  25. H. Grad — Asymptotic theory of the Boltzmann equation, Phys. Fluids 6 (1963), 147–181.ADSCrossRefMATHMathSciNetGoogle Scholar
  26. H. Grad — Asymptotic theory of Boltzmann equation II, Rarefied Gas Dynamics, vol. 1 (1963a), 26–59, edited by J.A. Laurmann, Academic Press.Google Scholar
  27. H. Grad — Asymptotic equivalence of the Navier-Stokes and nonlinear Boltzmann equation. Proc. Symp. Appl. Math. 17, Amer. Math. Soc., Providence, R.I. 1965, 154–183.MATHGoogle Scholar
  28. W. Greenberg, J. Voigt, P.F. Zweifel — Discretized Boltzmann equation: lattice limit and non-Maxwellian gases, J. Stat. Phys. 21 (1979), 649–657.ADSCrossRefMathSciNetGoogle Scholar
  29. J.P. Guiraud — Problème aux limites interieur pour l'equation de Boltzmann en regime stationnaire, faiblement nonlineare, J. Mecanique 11 (1972), 183–231.MATHGoogle Scholar
  30. J.P. Guiraud — An H-theorem for a gas of rigid spheres in a bounded domain. Colloq. Int. CNRS, 1975, N236, 29–58.Google Scholar
  31. A.G. Heintz — Solution of the boundary value problem for the nonlinear Boltzmann equation in a bounded domain (in Russian). Aerodyn. Rarefied Gases (Leningrad) 10 (1980), 16–24.Google Scholar
  32. A.G. Heinz — On the solution of initial-boundary problems for the nonlinear Boltzmann equation in a bounded domain (in Russian), Aerodyn. Rarefied Gases (Leningrad) 11 (1983), 166–174.Google Scholar
  33. S. Kaniel, M. Shinbrot — The Boltzmann equation. Uniqueness and local existence, Commun. Math. Phys. 58 (1978), 65–84.ADSCrossRefMATHMathSciNetGoogle Scholar
  34. N.B. Maslova — Stationary solutions of the Boltzmann equation for large Knudsen numbers (in Russian), Doklady Akad. Nauk. SSSR 229 (1976), 593–596.ADSMathSciNetGoogle Scholar
  35. N.B. Maslova — Solution of stationary problems of the Boltzmann equation for large Knudsen numbers (in Russian), Zh. Vychis. Mat. i Mat. Fiz. 17 (1977), 1020–1030.MATHGoogle Scholar
  36. N.B. Maslova — Stationary solution of the Boltzmann equation for large Knudsen numbers (in Russian), Aerodyn. Rarefied Gases (Leningrad) 9 (1978), 139–155.MathSciNetGoogle Scholar
  37. N.B. Maslova — Stationary solutions of the Boltzmann equation and the Knudsen layer (in Russian) Aerodyn. Rarefied Gases (Leningrad) 10 (1980), 5–15.MATHMathSciNetGoogle Scholar
  38. N.B. Maslova — Stationary boundary value problems for the nonlinear Boltzmann equation (in Russian) Zap. Nauch. Sem. LOMI 110 (1981), 100–104.MATHMathSciNetGoogle Scholar
  39. N.B. Maslova — Global solutions for nonstationary kinetic equations (in Russian), Zap. Nauch. Sem. LOMI, 115 (1982), 169–177.MATHMathSciNetGoogle Scholar
  40. N.B. Maslova, A.N. Firsov — Solutions of the Cauchy problem for the Boltzmann equation (in Russian), Vestnik Leningrad Univ.1975, no. 19, 83–88.Google Scholar
  41. N.B. Maslova, R.P. Tchubenko — Asymptotic properties of solutions of the Boltzmann equation (in Russian), Dokl. Akad. Nauk SSR 202 (1972), 800–803.Google Scholar
  42. N.B. Maslova, R.P. Tchubenko — On solutions of the non-stationary Boltzmann equation (in Russian) Vestnik Leningrad Univ. 1973, no.1, 100–105.Google Scholar
  43. N.B. Maslova, R.P. Tchubenko — Lower bounds of solutions of the Boltzmann equation (in Russian), Vestnik Leningrad Univ. 1976, no. 7, 109–113.Google Scholar
  44. N.B. Maslova, R.P. Tchubenko — Relaxation in a monatomic space-homogeneous gas (in Russian, Vestnik Leningrad Univ. 1976a, no.13, 90–97.Google Scholar
  45. D. Morgenstern — General existence and uniqueness proof for spatially homogeneous solutions of the Maxwell-Boltzmann equation in the case of Maxwellian molecules, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 719–721.ADSCrossRefMATHMathSciNetGoogle Scholar
  46. D. Morgenstern — Analytical studies related to the Maxwell-Boltzmann equation, J. Rat Mech. Anal. 4 (1955), 533–545.MATHMathSciNetGoogle Scholar
  47. T. Nishida, K. Imai — Global solutions to the initial value problem for the nonlinear Boltzmann equation, Publ. Res. Inst. Math. Sci. Kyoto Univ. 12 (1976), 229–239.CrossRefMATHMathSciNetGoogle Scholar
  48. A. Palczewski — Solution of the Cauchy problem for the nonlinear Boltzmann equation, Bull Acad. Sci. 26 (1978), 807–811.MATHMathSciNetGoogle Scholar
  49. A. Palczewski — Local existence theorem for the Boltzmann equation in L1, Arch. of Mech. (Warsaw) 33 (1981), 973–981.MATHMathSciNetGoogle Scholar
  50. A. Palczewski — Boltzmann equation on a lattice: Global solution for non-Maxwellian gases, Arch. of Mech. (Warsaw) 34 (1982), 287–296.MATHMathSciNetGoogle Scholar
  51. A. Ya Povzner — Boltzmann equation in the kinetic theory (in Russian), Mat. Sbornik 58 (1962), 65–86.MATHMathSciNetGoogle Scholar
  52. Y. Shizuta, K. Asano — Global solutions of the Boltzmann equation in a bounded convex domain, Proc. Japan Acad. 53A (1977), 3–5.CrossRefMATHMathSciNetGoogle Scholar
  53. H. Spohn — Boltzmann equation on a lattice: Existence and uniqueness of solutions, J. Stat. Phys. 20 (1979), 463–470.ADSCrossRefMathSciNetGoogle Scholar
  54. C. Truesdell, R.G. Muncaster — Fundamentals of Maxwell's Kinetic Theory of a Simple Monatomic Gas, Academic Press, 1980.Google Scholar
  55. S. Ukai — On the existence of global solutions of mixed problem for nonlinear Boltzmann equation, Proc. Japan Acad. 50 (1974), 179–184.CrossRefMATHMathSciNetGoogle Scholar
  56. S. Ukai, K. Asano — On the Cauchy problem of the Boltzmann equation with soft potential, Publ. Res. Inst. Math. Sci. Kyoto Univ. 18 (1982), 477–519.CrossRefMATHMathSciNetGoogle Scholar
  57. S. Ukai, K. Asano — Stationary solutions of the Boltzmann equation for a gas flow past an obstacle. I Existence, II Stability, Preprint 1982a.Google Scholar
  58. W. Wieser — Die Boltzmanngleichung mit viskoser Störung: Existenz und Regularität globaler Lösungen unter natürlichen Anfangsbedingungen, Ph. D. Thesis, Bonn 1983.Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • W. Fiszdon
    • 1
  • M. Lachowicz
    • 1
  • A. Palczewski
    • 1
  1. 1.Department of MathematicsUniversity of WarsawGermany

Personalised recommendations