Conservation laws without convexity

  • C. M. Dafermos
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 195)


Contact Discontinuity Admissible Solution Large Time Behavior Nonlinear Hyperbolic System Centered Rarefaction Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    BENILAN, P. and M. G. CRANDALL. Regularizing effects of homogeneous evolution equations. MRC Technical Summary Report #2076, U. Wisconsin, Madison.Google Scholar
  2. [2]
    CHENG, K.S. Asymptotic behavior of solutions of a conservation law without convexity condition. J. Diff. Eqs. 40 (1981), 343–376.ADSCrossRefMATHMathSciNetGoogle Scholar
  3. [3]
    CONLON, J. G. Asymptotic behavior for a hyperbolic conservation law with periodic initial data. Comm. Pure Appl. Math. 32 (1979), 99–112.CrossRefMATHMathSciNetGoogle Scholar
  4. [4]
    DAFERMOS, C. M. Characteristics in hyperbolic conservation laws. Nonlinear Analysis and Mechanics, R.J. Knops, Ed.,Research Notes in Math. No. 17, Pitman, London 1977.Google Scholar
  5. [5]
    DAFERMOS, C. M. Generalized characteristics and the structure of solutions of hyperbolic conservation laws. Indiana U. Math. J. 26 (1977), 1097–1119.CrossRefMATHMathSciNetGoogle Scholar
  6. [6]
    DIPERNA, R. J. Singularities of solutions of nonlinear hyperbolic systems of conservation laws. Arch. Rat. Mech. Anal. 60 (1975), 75–100.CrossRefMATHMathSciNetGoogle Scholar
  7. [7]
    FILIPPOV, A. F. Differential equations with discontinuous right-hand side. A.M.S. Transl., Ser. 2, 42, 199–231.Google Scholar
  8. [8]
    GREENBERG, J. M., and D. D. M. TONG. Decay of periodic solutions of ∂u/∂t+∂f(u)/∂x = 0. J. Math. Anal. Appl. 43 (1973), 56–71.CrossRefMATHMathSciNetGoogle Scholar
  9. [9]
    KRUŽKOV, S. N., and N. S. PETROSJAN. Asymptotics of solutions of the Cauchy problem for first-order quasilinear equations. Soviet Math. Dokl. 26 (1982), 141–144.Google Scholar
  10. [10]
    LAX, P. D. Hyperbolic systems of conservation laws II. Comm. Pure Appl. Math. 10 (1957), 537–566.CrossRefMATHMathSciNetGoogle Scholar
  11. [11]
    LIU, T.-P. Admissible solutions of hyperbolic conservation laws. Memoirs A.M.S. 30(1981), No. 240.Google Scholar
  12. [12]
    LIU, T.-P., and M. PIERRE. Source-solutions and asymptotic behavior in conservation laws. MRC Technical Summary Report #2318, U. Wisconsin, Madison.Google Scholar
  13. [13]
    OLEINIK, 0. A. The Cauchy problem for nonlinear equations in a class of discontinuous functions. A.M.S. Transl., Ser. 2, 42, 7–12.Google Scholar
  14. [14]
    SCHAEFFER, D. G. A regularity theorem for conservation laws. Advances in Math. 11 (1973), 368–386.CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • C. M. Dafermos
    • 1
  1. 1.Division of Applied MathematicsBrown UniversityProvidence, R. I.USA

Personalised recommendations